This paper investigates the application of support vector machine to the modeling of high-speed interconnects with largely varying and/or highly uncertain design parameters. The proposed method relies on a robust and well-established mathematical framework, yielding accurate surrogates of complex dynamical systems. An identification procedure based on the observation of a small set of system responses allows generating compact parametric relations, which can be used for design optimization and/or stochastic analysis. The feasibility and strength of the method are demonstrated based on a benchmark function and on the statistical assessment of a realistic printed circuit board interconnect, highlighting the main features and benefits of this technique over state-of-the-art solutions. Emphasis is given to the effects of the initial sample size and of input noise on the model estimation.

Machine learning for the performance assessment of high-speed links / Trinchero, R.; Manfredi, P.; Stievano, I. S.; Canavero, Flavio G.. - In: IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY. - ISSN 0018-9375. - STAMPA. - 60:6(2018), pp. 1627-1634. [10.1109/TEMC.2018.2797481]

Machine learning for the performance assessment of high-speed links

R. Trinchero;P. Manfredi;I. S. Stievano;Flavio G. Canavero
2018

Abstract

This paper investigates the application of support vector machine to the modeling of high-speed interconnects with largely varying and/or highly uncertain design parameters. The proposed method relies on a robust and well-established mathematical framework, yielding accurate surrogates of complex dynamical systems. An identification procedure based on the observation of a small set of system responses allows generating compact parametric relations, which can be used for design optimization and/or stochastic analysis. The feasibility and strength of the method are demonstrated based on a benchmark function and on the statistical assessment of a realistic printed circuit board interconnect, highlighting the main features and benefits of this technique over state-of-the-art solutions. Emphasis is given to the effects of the initial sample size and of input noise on the model estimation.
File in questo prodotto:
File Dimensione Formato  
jnl-2018TEMC-SVM.pdf

accesso aperto

Descrizione: jnl-2018TEMC-SVM
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 1.41 MB
Formato Adobe PDF
1.41 MB Adobe PDF Visualizza/Apri
jnl-2018TEMC-SVM-IEEE.pdf

non disponibili

Descrizione: jnl-2018TEMC-SVM-IEEE
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.15 MB
Formato Adobe PDF
1.15 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2715089
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo