Predicting the oncogenic potential of a gene fusion transcript is an important and challenging task in the study of cancer development. To this date, the available approaches mostly rely on protein domain analysis to provide a probability score explaining the oncogenic potential of a gene fusion. In this paper, a Convolutional Neural Network model is proposed to discriminate gene fusions into oncogenic or non-oncogenic, exploiting only the protein sequence without protein domain information. Our proposed model obtained accuracy value close to 90% on a dataset of fused sequences.
Predicting the oncogenic potential of gene fusions using convolutional neural networks / Lovino, Marta; Urgese, Gianvito; Macii, Enrico; DI CATALDO, Santa; Ficarra, Elisa (LECTURE NOTES IN COMPUTER SCIENCE). - In: Computational Intelligence Methods for Bioinformatics and BiostatisticsELETTRONICO. - [s.l] : Springer International Publishing, 2020. - ISBN 978-3-030-34584-6. - pp. 277-284 [10.1007/978-3-030-34585-3_24]
Predicting the oncogenic potential of gene fusions using convolutional neural networks
LOVINO, MARTA;Gianvito Urgese;Enrico Macii;Santa Di Cataldo;Elisa Ficarra
2020
Abstract
Predicting the oncogenic potential of a gene fusion transcript is an important and challenging task in the study of cancer development. To this date, the available approaches mostly rely on protein domain analysis to provide a probability score explaining the oncogenic potential of a gene fusion. In this paper, a Convolutional Neural Network model is proposed to discriminate gene fusions into oncogenic or non-oncogenic, exploiting only the protein sequence without protein domain information. Our proposed model obtained accuracy value close to 90% on a dataset of fused sequences.| File | Dimensione | Formato | |
|---|---|---|---|
| 10.1007_978-3-030-34585-3.pdf accesso riservato 
											Tipologia:
											2a Post-print versione editoriale / Version of Record
										 
											Licenza:
											
											
												Non Pubblico - Accesso privato/ristretto
												
												
												
											
										 
										Dimensione
										1.21 MB
									 
										Formato
										Adobe PDF
									 | 1.21 MB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
| Fusioni_Springer_LNBI (1).pdf Open Access dal 24/01/2021 
											Tipologia:
											2. Post-print / Author's Accepted Manuscript
										 
											Licenza:
											
											
												Pubblico - Tutti i diritti riservati
												
												
												
											
										 
										Dimensione
										361.59 kB
									 
										Formato
										Adobe PDF
									 | 361.59 kB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2712598
			
		
	
	
	
			      	