Predicting the oncogenic potential of a gene fusion transcript is an important and challenging task in the study of cancer development. To this date, the available approaches mostly rely on protein domain analysis to provide a probability score explaining the oncogenic potential of a gene fusion. In this paper, a Convolutional Neural Network model is proposed to discriminate gene fusions into oncogenic or non-oncogenic, exploiting only the protein sequence without protein domain information. Our proposed model obtained accuracy value close to 90% on a dataset of fused sequences.
Predicting the oncogenic potential of gene fusions using convolutional neural networks / Lovino, Marta; Urgese, Gianvito; Macii, Enrico; DI CATALDO, Santa; Ficarra, Elisa (LECTURE NOTES IN COMPUTER SCIENCE). - In: Computational Intelligence Methods for Bioinformatics and BiostatisticsELETTRONICO. - [s.l] : Springer International Publishing, 2020. - ISBN 978-3-030-34584-6. - pp. 277-284 [10.1007/978-3-030-34585-3_24]
Predicting the oncogenic potential of gene fusions using convolutional neural networks
LOVINO, MARTA;Gianvito Urgese;Enrico Macii;Santa Di Cataldo;Elisa Ficarra
2020
Abstract
Predicting the oncogenic potential of a gene fusion transcript is an important and challenging task in the study of cancer development. To this date, the available approaches mostly rely on protein domain analysis to provide a probability score explaining the oncogenic potential of a gene fusion. In this paper, a Convolutional Neural Network model is proposed to discriminate gene fusions into oncogenic or non-oncogenic, exploiting only the protein sequence without protein domain information. Our proposed model obtained accuracy value close to 90% on a dataset of fused sequences.File | Dimensione | Formato | |
---|---|---|---|
10.1007_978-3-030-34585-3.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.21 MB
Formato
Adobe PDF
|
1.21 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Fusioni_Springer_LNBI (1).pdf
Open Access dal 24/01/2021
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
361.59 kB
Formato
Adobe PDF
|
361.59 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2712598