Purpose: To investigate a genetic algorithm approach to automatic treatment planning. Methods: A Python script based on genetic algorithm (GA) was implemented for VMAT treatment planning of prostate tumor. The script was implemented in RayStation treatment planning system using Python code. Two different clinical prescriptions were considered: 78 Gy prescribed to planning target volume in 39 fractions (GROUP 1) and simultaneous integrated boost (70.2 Gy to prostate bed and 61.1 Gy to seminal vesicles) in 26 fractions (GROUP 2). The script automatically optimizes doses to PTV and OARs according to GA. A comparison with corresponding plans created with Monaco TPS (M) and Auto-Planning module of Pinnacle3 (AP) was carried out. The plans were evaluated with a total score (TS) of PlanIQ software in terms of target coverage and sparing of OARs as well as clinical score (CS) performed by a Radiation Oncologist. Results: In GROUP 1, mean value of TS were 150.6 ± 30.7, 146.3 ± 36.1 and 137.4 ± 35.7 for AP, GA and M respectively. For GROUP 2, mean value for TS were 163.5 ± 16.8, 163.4 ± 24.7 and 162.9 ± 16.6 for AP, GA and M respectively with no significance differences. In terms of CS, the highest value has been attributed to GA in four patients out of five for both GROUP 1 and 2. Conclusions: Genetic approach is practicable for prostate VMAT plan generation and studies are underway in other anatomical sites such as Head and Neck and Rectum.
Automated Heuristic Optimization of Prostate VMAT Treatment Planning / Fiandra, Christian; Alparone, Alessandro; Gallio, Elena; Vecchi, Claudio; Balestra, Gabriella; Bartoncini, Sara; Rosati, Samanta; Ragona, Riccardo; Ricardi, Umberto. - In: INTERNATIONAL JOURNAL OF MEDICAL PHYSICS, CLINICAL ENGINEERING AND RADIATION ONCOLOGY. - ISSN 2168-5436. - ELETTRONICO. - 07:03(2018), pp. 414-425. [10.4236/ijmpcero.2018.73034]
Automated Heuristic Optimization of Prostate VMAT Treatment Planning
Fiandra, Christian;Balestra, Gabriella;Rosati, Samanta;
2018
Abstract
Purpose: To investigate a genetic algorithm approach to automatic treatment planning. Methods: A Python script based on genetic algorithm (GA) was implemented for VMAT treatment planning of prostate tumor. The script was implemented in RayStation treatment planning system using Python code. Two different clinical prescriptions were considered: 78 Gy prescribed to planning target volume in 39 fractions (GROUP 1) and simultaneous integrated boost (70.2 Gy to prostate bed and 61.1 Gy to seminal vesicles) in 26 fractions (GROUP 2). The script automatically optimizes doses to PTV and OARs according to GA. A comparison with corresponding plans created with Monaco TPS (M) and Auto-Planning module of Pinnacle3 (AP) was carried out. The plans were evaluated with a total score (TS) of PlanIQ software in terms of target coverage and sparing of OARs as well as clinical score (CS) performed by a Radiation Oncologist. Results: In GROUP 1, mean value of TS were 150.6 ± 30.7, 146.3 ± 36.1 and 137.4 ± 35.7 for AP, GA and M respectively. For GROUP 2, mean value for TS were 163.5 ± 16.8, 163.4 ± 24.7 and 162.9 ± 16.6 for AP, GA and M respectively with no significance differences. In terms of CS, the highest value has been attributed to GA in four patients out of five for both GROUP 1 and 2. Conclusions: Genetic approach is practicable for prostate VMAT plan generation and studies are underway in other anatomical sites such as Head and Neck and Rectum.File | Dimensione | Formato | |
---|---|---|---|
2018_Automated Heuristic Optimization of Prostate VMAT Treatment Planning.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
1.98 MB
Formato
Adobe PDF
|
1.98 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2712190
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo