All the content consumed by mobile users, be it a web page or a live stream, undergoes some processing along the way; as an ex- ample, web pages and videos are transcoded to fit each device’s screen. The recent multi-access edge computing (MEC) paradigm envisions performing such processing within the cellular network, as opposed to resorting to a cloud server on the Internet. Designing a MEC network, i.e., placing and dimensioning the computational facilities therein, re- quires information on how much computational power is required to produce the contents needed by the users. However, real-world demand traces only contain information on how much data is downloaded. In this paper, we demonstrate how to enrich demand traces with information about the computational power needed to process the different types of content, and we show the substantial benefit that can be obtained from using such enriched traces for the design of MEC-based networks.

From Megabits to CPU Ticks: Enriching a Demand Trace in the Age of MEC / Malandrino, Francesco; Chiasserini, Carla Fabiana; Avino, Giuseppe; Malinverno, Marco; Kirkpatrick, Scott. - In: IEEE TRANSACTIONS ON BIG DATA. - ISSN 2332-7790. - STAMPA. - 64:1(2020), pp. 43-50. [10.1109/TBDATA.2018.2867025]

From Megabits to CPU Ticks: Enriching a Demand Trace in the Age of MEC

Francesco Malandrino;Carla-Fabiana Chiasserini;Giuseppe Avino;Marco Malinverno;
2020

Abstract

All the content consumed by mobile users, be it a web page or a live stream, undergoes some processing along the way; as an ex- ample, web pages and videos are transcoded to fit each device’s screen. The recent multi-access edge computing (MEC) paradigm envisions performing such processing within the cellular network, as opposed to resorting to a cloud server on the Internet. Designing a MEC network, i.e., placing and dimensioning the computational facilities therein, re- quires information on how much computational power is required to produce the contents needed by the users. However, real-world demand traces only contain information on how much data is downloaded. In this paper, we demonstrate how to enrich demand traces with information about the computational power needed to process the different types of content, and we show the substantial benefit that can be obtained from using such enriched traces for the design of MEC-based networks.
File in questo prodotto:
File Dimensione Formato  
tbd_R2_v1.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 226.57 kB
Formato Adobe PDF
226.57 kB Adobe PDF Visualizza/Apri
TBD_online.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 428.4 kB
Formato Adobe PDF
428.4 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
TBD_Final_2020.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 699.8 kB
Formato Adobe PDF
699.8 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2711884