In ultrarelativistic heavy-ion collisions, the event-by-event variation of the elliptic flow v(2) reflects fluctuations in the shape of the initial state of the system. This allows to select events with the same centrality but different initial geometry. This selection technique, Event Shape Engineering, has been used in the analysis of charge-dependent two-and three-particle correlations in Pb-Pb collisions at root s(NN) = 2.76 TeV. The two-particle correlator < cos(phi(alpha) - phi(ss))>, calculated for different combinations of charges alpha and beta, is almost independent of v(2) (for a given centrality), while the three-particle correlator < cos(phi(alpha) + phi(beta) - 2 Psi(2))> scales almost linearly both with the event v(2) and charged-particle pseudorapidity density. The charge dependence of the three-particle correlator is often interpreted as evidence for the Chiral Magnetic Effect (CME), a parity violating effect of the strong interaction. However, its measured dependence on v(2) points to a large non-CME contribution to the correlator. Comparing the results with Monte Carlo calculations including a magnetic field due to the spectators, the upper limit of the CME signal contribution to the three-particle correlator in the 10-50% centrality interval is found to be 26-33% at 95% confidence level. (c) 2017 The Author(s). Published by Elsevier B.V.

Constraining the magnitude of the Chiral Magnetic Effect with Event Shape Engineering in Pb–Pb collisions at sNN=2.76 TeV / Acharya, S.; Adam, J.; Adamová, D.; Adolfsson, J.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Bufalino, S.; Concas, M.; Grosa, F.; Ravasenga, I.. - In: PHYSICS LETTERS. SECTION B. - ISSN 0370-2693. - STAMPA. - 777:(2018), pp. 151-162. [10.1016/j.physletb.2017.12.021]

Constraining the magnitude of the Chiral Magnetic Effect with Event Shape Engineering in Pb–Pb collisions at sNN=2.76 TeV

Agnello, M.;Bufalino, S.;Concas, M.;Grosa, F.;Ravasenga, I.
2018

Abstract

In ultrarelativistic heavy-ion collisions, the event-by-event variation of the elliptic flow v(2) reflects fluctuations in the shape of the initial state of the system. This allows to select events with the same centrality but different initial geometry. This selection technique, Event Shape Engineering, has been used in the analysis of charge-dependent two-and three-particle correlations in Pb-Pb collisions at root s(NN) = 2.76 TeV. The two-particle correlator < cos(phi(alpha) - phi(ss))>, calculated for different combinations of charges alpha and beta, is almost independent of v(2) (for a given centrality), while the three-particle correlator < cos(phi(alpha) + phi(beta) - 2 Psi(2))> scales almost linearly both with the event v(2) and charged-particle pseudorapidity density. The charge dependence of the three-particle correlator is often interpreted as evidence for the Chiral Magnetic Effect (CME), a parity violating effect of the strong interaction. However, its measured dependence on v(2) points to a large non-CME contribution to the correlator. Comparing the results with Monte Carlo calculations including a magnetic field due to the spectators, the upper limit of the CME signal contribution to the three-particle correlator in the 10-50% centrality interval is found to be 26-33% at 95% confidence level. (c) 2017 The Author(s). Published by Elsevier B.V.
File in questo prodotto:
File Dimensione Formato  
CME_ESE_PbPb_2dot76_TeV.pdf

non disponibili

Descrizione: Constraining the magnitude of the Chiral Magnetic Effect with Event Shape Engineering in Pb-Pb collisions at root s(NN)=2.76 TeV
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 840.84 kB
Formato Adobe PDF
840.84 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2711714
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo