Hardware computation is facing in the present age a deep transformation of its own paradigms. Silicon based computation is reaching its limit due to the physical constraints of transistor technology. As predicted by the Moore’s law, downscaling of transistor dimensions doubled each year since the 60s, leading nowadays to the extreme of 16-nm channel width of the present state-of-the-art technology. No further improvement is possible, since laws of physics impose a different electrical behavior when lower dimensions are attempted. Multiple solutions are then envisaged, spanning the range from quantum computing to neuromorphic computing. The present dissertation wants to be a preliminary study for understanding the opportunities enabled by neuromorphic computing based on resistive switching memories. In particular, brain inspires technology and architecture of new generation processors because of its unique properties: parallel and distributed computation, superposition of processing and memory unit, low power consumption, to cite only some of them. Such features make brain particularly efficient and robust against degraded data, further than particularly suitable to process and store in memory new nformation. Despite many research projects and some commercial products are already proposing brain-like computing processors, like spiNNaker or IBM’s Bluenorth, they only mimic the brain functioning with standard Silicon technology, that is inherently serial and distinguish between processing and memory unit. Resistive switching technology on the other hand, would allow to overcome many of these issues, enabling a far better match between biological and artificial neuromorphic computation. Resistive switching are, generally speaking, Metal-Insulator-Metal structures able to change their electrical conductance as a consequence of the history of applied electric signal. In such sense, they behave exactly as synapses do in a biological neural networks. For this reason, resistive switching when modeled as memristor, i.e. memory-resistor, can act as artificial synapses and, moreover, are particularly suitable to be interfaced with artificial Silicon neurons that are designed to replicate the biological behavior when excited with electric pulses. Anyhow, from the technological standpoint, there is still no standard on the design and fabrication of resistive switching, so that multiple structure and materials are investigated. In this dissertation, it is reported an analysis of multiple resistive switching devices, based on various materials, i.e. TiO2, ZnO and HfO, and device architectures, i.e. thin film and nanostructured devices, with the scope of both characterizing and comprehending the physics behind resistive switching phenomena. Furthermore, numerical simulations of artificial spiking neural networks, embedding Silicon neurons and HfO-based resistive switching are designed and performed, in order to give a systematic analysis of the performances reached by this new kind of computing paradigm.

Neuromorphic systems based on memristive devices - From the material science perspective to bio-inspired learning hardware / Conti, Daniele. - (2018 Jun 26). [10.6092/polito/porto/2711511]

Neuromorphic systems based on memristive devices - From the material science perspective to bio-inspired learning hardware

CONTI, DANIELE
2018

Abstract

Hardware computation is facing in the present age a deep transformation of its own paradigms. Silicon based computation is reaching its limit due to the physical constraints of transistor technology. As predicted by the Moore’s law, downscaling of transistor dimensions doubled each year since the 60s, leading nowadays to the extreme of 16-nm channel width of the present state-of-the-art technology. No further improvement is possible, since laws of physics impose a different electrical behavior when lower dimensions are attempted. Multiple solutions are then envisaged, spanning the range from quantum computing to neuromorphic computing. The present dissertation wants to be a preliminary study for understanding the opportunities enabled by neuromorphic computing based on resistive switching memories. In particular, brain inspires technology and architecture of new generation processors because of its unique properties: parallel and distributed computation, superposition of processing and memory unit, low power consumption, to cite only some of them. Such features make brain particularly efficient and robust against degraded data, further than particularly suitable to process and store in memory new nformation. Despite many research projects and some commercial products are already proposing brain-like computing processors, like spiNNaker or IBM’s Bluenorth, they only mimic the brain functioning with standard Silicon technology, that is inherently serial and distinguish between processing and memory unit. Resistive switching technology on the other hand, would allow to overcome many of these issues, enabling a far better match between biological and artificial neuromorphic computation. Resistive switching are, generally speaking, Metal-Insulator-Metal structures able to change their electrical conductance as a consequence of the history of applied electric signal. In such sense, they behave exactly as synapses do in a biological neural networks. For this reason, resistive switching when modeled as memristor, i.e. memory-resistor, can act as artificial synapses and, moreover, are particularly suitable to be interfaced with artificial Silicon neurons that are designed to replicate the biological behavior when excited with electric pulses. Anyhow, from the technological standpoint, there is still no standard on the design and fabrication of resistive switching, so that multiple structure and materials are investigated. In this dissertation, it is reported an analysis of multiple resistive switching devices, based on various materials, i.e. TiO2, ZnO and HfO, and device architectures, i.e. thin film and nanostructured devices, with the scope of both characterizing and comprehending the physics behind resistive switching phenomena. Furthermore, numerical simulations of artificial spiking neural networks, embedding Silicon neurons and HfO-based resistive switching are designed and performed, in order to give a systematic analysis of the performances reached by this new kind of computing paradigm.
26-giu-2018
File in questo prodotto:
File Dimensione Formato  
CONTI_Daniele_PhDthesis.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: Creative commons
Dimensione 28.41 MB
Formato Adobe PDF
28.41 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2711511
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo