The present thesis investigates innovative energy technologies and control algorithms for enhancing demand-side management in buildings. The work focuses on an innovative low-temperature solar thermal system for supplying space heating demand of buildings. This technology is used as a case study to explore possible solutions to fulfil the mismatch between energy production and its exploitation in building. This shortcoming represents the primary issue of renewable energy sources. Technologies enhancing the energy storage capacity and active demand-side management or demand-response strategies must be implemented in buildings. For these purposes, it is possible to employ hardware or software solutions. The hardware solutions for thermal demand response of buildings are those technologies that allow the energy loads to be permanently shifted or mitigated. The software solutions for demand response are those that integrate an intelligent supervisory layer in the building automation (or management) systems. The present thesis approaches the problem from both the hardware technologies side and the software solutions side. This approach enables the mutual relationships and interactions between the strategies to be appropriately measured. The thesis can be roughly divided in two parts. The first part of the thesis focuses on an innovative solar thermal system exploiting a novel heat transfer fluid and storage media based on micro-encapsulated Phase Change Material slurry. This material leads the system to enhance latent heat exchange processes and increasing the overall performance. The features of Phase Change Material slurry are investigated experimentally and theoretically. A full-scale prototype of this innovative solar system enhancing latent heat exchange is conceived, designed and realised. An experimental campaign on the prototype is used to calibrate and validate a numerical model of the solar thermal system. This model is developed in this thesis to define the thermo-energetic behaviour of the technology. It consists of two mathematical sub-models able to describe the power/energy balances of the flat-plate solar thermal collector and the thermal energy storage unit respectively. In closed-loop configuration, all the Key Performance Indicators used to assess the reliability of the model indicate an excellent comparison between the system monitored outputs and simulation results. Simulation are performed both varying parametrically the boundary condition and investigating the long-term system performance in different climatic locations. Compared to a traditional water-based system used as a reference baseline, the simulation results show that the innovative system could improve the production of useful heat up to 7 % throughout the year and 19 % during the heating season. Once the hardware technology has been defined, the implementation of an innovative control method is necessary to enhance the operational efficiency of the system. This is the primary focus of the second part of the thesis. A specific solution is considered particularly promising for this purpose: the adoption of Model Predictive Control (MPC) formulations for improving the system thermal and energy management. Firstly, this thesis provides a robust and complete framework of the steps required to define an MPC problem for building processes regulation correctly. This goal is reached employing an extended review of the scientific literature and practical application concerning MPC application for building management. Secondly, an MPC algorithm is formulated to regulate the full-scale solar thermal prototype. A testbed virtual environment is developed to perform closed-loop simulations. The existing rule-based control logic is employed as the reference baseline. Compared to the baseline, the MPC algorithm produces energy savings up to 19.2 % with lower unmet energy demand.

Innovative solar energy technologies and control algorithms for enhancing demand-side management in buildings / Serale, Gianluca. - (2018 Jul 24). [10.6092/polito/porto/2711298]

Innovative solar energy technologies and control algorithms for enhancing demand-side management in buildings

SERALE, GIANLUCA
2018

Abstract

The present thesis investigates innovative energy technologies and control algorithms for enhancing demand-side management in buildings. The work focuses on an innovative low-temperature solar thermal system for supplying space heating demand of buildings. This technology is used as a case study to explore possible solutions to fulfil the mismatch between energy production and its exploitation in building. This shortcoming represents the primary issue of renewable energy sources. Technologies enhancing the energy storage capacity and active demand-side management or demand-response strategies must be implemented in buildings. For these purposes, it is possible to employ hardware or software solutions. The hardware solutions for thermal demand response of buildings are those technologies that allow the energy loads to be permanently shifted or mitigated. The software solutions for demand response are those that integrate an intelligent supervisory layer in the building automation (or management) systems. The present thesis approaches the problem from both the hardware technologies side and the software solutions side. This approach enables the mutual relationships and interactions between the strategies to be appropriately measured. The thesis can be roughly divided in two parts. The first part of the thesis focuses on an innovative solar thermal system exploiting a novel heat transfer fluid and storage media based on micro-encapsulated Phase Change Material slurry. This material leads the system to enhance latent heat exchange processes and increasing the overall performance. The features of Phase Change Material slurry are investigated experimentally and theoretically. A full-scale prototype of this innovative solar system enhancing latent heat exchange is conceived, designed and realised. An experimental campaign on the prototype is used to calibrate and validate a numerical model of the solar thermal system. This model is developed in this thesis to define the thermo-energetic behaviour of the technology. It consists of two mathematical sub-models able to describe the power/energy balances of the flat-plate solar thermal collector and the thermal energy storage unit respectively. In closed-loop configuration, all the Key Performance Indicators used to assess the reliability of the model indicate an excellent comparison between the system monitored outputs and simulation results. Simulation are performed both varying parametrically the boundary condition and investigating the long-term system performance in different climatic locations. Compared to a traditional water-based system used as a reference baseline, the simulation results show that the innovative system could improve the production of useful heat up to 7 % throughout the year and 19 % during the heating season. Once the hardware technology has been defined, the implementation of an innovative control method is necessary to enhance the operational efficiency of the system. This is the primary focus of the second part of the thesis. A specific solution is considered particularly promising for this purpose: the adoption of Model Predictive Control (MPC) formulations for improving the system thermal and energy management. Firstly, this thesis provides a robust and complete framework of the steps required to define an MPC problem for building processes regulation correctly. This goal is reached employing an extended review of the scientific literature and practical application concerning MPC application for building management. Secondly, an MPC algorithm is formulated to regulate the full-scale solar thermal prototype. A testbed virtual environment is developed to perform closed-loop simulations. The existing rule-based control logic is employed as the reference baseline. Compared to the baseline, the MPC algorithm produces energy savings up to 19.2 % with lower unmet energy demand.
24-lug-2018
File in questo prodotto:
File Dimensione Formato  
conv_thesis_serale_rev.pdf

accesso aperto

Descrizione: Doctoral thesis
Tipologia: Tesi di dottorato
Licenza: Creative commons
Dimensione 11 MB
Formato Adobe PDF
11 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2711298
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo