The Sustainability Assessment of Second Life Applications of Automotive Batteries (SASLAB) exploratory research project of the European Commission’s Joint Research Centre (JRC) aims at developing and applying a methodology to analyse the sustainability of deploying electrified vehicles (xEV) batteries in second use applications. A mapping of industrial demonstration and publicly-funded research projects in the area is presented, followed by an experimental assessment of the capacity and impedance change of lithium-ion cells during calendar and cycle ageing. Fresh cells and cells aged in the laboratory, as well as under real-world driving conditions, have been characterised to understand their application-specific remaining lifetime, beyond the 70% to 80% end-of-first-use criterion. For this purpose, pre-aged cells were examined under duty-cycles that resemble those of second use grid-scale applications

Sustainability Assessment of Second Use Applications of Automotive Batteries: Ageing of Li-Ion Battery Cells in Automotive and Grid-Scale Applications / Podias, Andreas; Pfrang, Andreas; Di Persio, Franco; Kriston, Akos; Bobba, Silvia; Mathieux, Fabrice; Messagie, Maarten; Boon-Brett, Lois. - In: WORLD ELECTRIC VEHICLE JOURNAL. - ISSN 2032-6653. - STAMPA. - 9:2(2018), p. 24. [10.3390/wevj9020024]

Sustainability Assessment of Second Use Applications of Automotive Batteries: Ageing of Li-Ion Battery Cells in Automotive and Grid-Scale Applications

Bobba, Silvia;
2018

Abstract

The Sustainability Assessment of Second Life Applications of Automotive Batteries (SASLAB) exploratory research project of the European Commission’s Joint Research Centre (JRC) aims at developing and applying a methodology to analyse the sustainability of deploying electrified vehicles (xEV) batteries in second use applications. A mapping of industrial demonstration and publicly-funded research projects in the area is presented, followed by an experimental assessment of the capacity and impedance change of lithium-ion cells during calendar and cycle ageing. Fresh cells and cells aged in the laboratory, as well as under real-world driving conditions, have been characterised to understand their application-specific remaining lifetime, beyond the 70% to 80% end-of-first-use criterion. For this purpose, pre-aged cells were examined under duty-cycles that resemble those of second use grid-scale applications
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2711024
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo