α-Cellulose was pyrolyzed using a multimode microwave oven, different microwave absorbers and experimental set ups. The microwave absorber showed a strong influence: carbon gave a large gasification of cellulose (yield of gas up to 53.8%) while Al2O3 gave a high yield of bio-char (64.1%) and a low gas production (3.0%). Bio-oil was obtained with the highest yield (37.6%) using iron as microwave absorber and a condenser between the oven and the collecting system. Dark brown bio-oils having low density and viscosity due to the presence of large amount of furanosidic compounds were collected. Bio-oils were characterized through GC–MS, FT-IR, NMR, The GC–MS analysis was employed to evaluate the composition of bio-oils using calculated retention factors. A high concentration of levoglucosan (133.9 mg/mL) together with acetic acid, acetic anhydride, 1-hydroxy-2-propanone, formic acid and furfural were obtained using graphite as microwave absorber. A mechanisms was proposed to rationalize the formation of aromatic compounds present in bio-oils. Water contents in bio-oils were affected by all parameters of the process, mainly by the microwave absorber. The use of silica has proved to be a promising way to obtain bio-oil with low water content (13%), while pyrolysis in the presence of carbon gave a large amount of water (46%).

Pyrolysis of α-cellulose using a multimode microwave oven / Bartoli, Mattia; Rosi, Luca; Giovannelli, Alessio; Frediani, Piero; Frediani, Marco. - In: JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS. - ISSN 0165-2370. - 120:(2016), pp. 284-296. [10.1016/j.jaap.2016.05.016]

Pyrolysis of α-cellulose using a multimode microwave oven

Bartoli, Mattia;
2016

Abstract

α-Cellulose was pyrolyzed using a multimode microwave oven, different microwave absorbers and experimental set ups. The microwave absorber showed a strong influence: carbon gave a large gasification of cellulose (yield of gas up to 53.8%) while Al2O3 gave a high yield of bio-char (64.1%) and a low gas production (3.0%). Bio-oil was obtained with the highest yield (37.6%) using iron as microwave absorber and a condenser between the oven and the collecting system. Dark brown bio-oils having low density and viscosity due to the presence of large amount of furanosidic compounds were collected. Bio-oils were characterized through GC–MS, FT-IR, NMR, The GC–MS analysis was employed to evaluate the composition of bio-oils using calculated retention factors. A high concentration of levoglucosan (133.9 mg/mL) together with acetic acid, acetic anhydride, 1-hydroxy-2-propanone, formic acid and furfural were obtained using graphite as microwave absorber. A mechanisms was proposed to rationalize the formation of aromatic compounds present in bio-oils. Water contents in bio-oils were affected by all parameters of the process, mainly by the microwave absorber. The use of silica has proved to be a promising way to obtain bio-oil with low water content (13%), while pyrolysis in the presence of carbon gave a large amount of water (46%).
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2710229
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo