Sensorless control of synchronous reluctance motors relies on the knowledge of the machine current-to-flux maps. Previous work demonstrated the feasibility of sensorless identification of the flux maps, performed by exciting the machine with square-wave voltage pulses at standstill, and without the need of rotor locking. The rotor position was initially estimated and then used throughout the identification, in open-loop fashion. In some cases, rotor oscillation and eventually position drift led to stop the identification before the programmed dq current domain was covered entirely. In this paper, the rotor position is closed-loop tracked during the motor commissioning to counteract the occurrence of rotor movement. The hysteresis-controlled excitation voltage is augmented with a high-frequency square-wave voltage component, and the position is tracked through demodulation of the current response to such high-frequency component. The proposed approach is experimentally verified on a 2.2 kW synchronous reluctance motor prototype. The results show that the id, iq commissioning domain is substantially extended, resulting in more accurate flux maps. Moreover, self-tuning of the method is addressed and possible causes of error are analyzed and commented.

Automatic Tuning for Sensorless Commissioning of Synchronous Reluctance Machines Augmented with High Frequency Voltage Injection / Pescetto, Paolo; Pellegrino, Gianmario. - In: IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS. - ISSN 0093-9994. - 54:5(2018), pp. 4485-4493. [10.1109/TIA.2018.2839600]

Automatic Tuning for Sensorless Commissioning of Synchronous Reluctance Machines Augmented with High Frequency Voltage Injection

Pescetto, Paolo;Pellegrino, Gianmario
2018

Abstract

Sensorless control of synchronous reluctance motors relies on the knowledge of the machine current-to-flux maps. Previous work demonstrated the feasibility of sensorless identification of the flux maps, performed by exciting the machine with square-wave voltage pulses at standstill, and without the need of rotor locking. The rotor position was initially estimated and then used throughout the identification, in open-loop fashion. In some cases, rotor oscillation and eventually position drift led to stop the identification before the programmed dq current domain was covered entirely. In this paper, the rotor position is closed-loop tracked during the motor commissioning to counteract the occurrence of rotor movement. The hysteresis-controlled excitation voltage is augmented with a high-frequency square-wave voltage component, and the position is tracked through demodulation of the current response to such high-frequency component. The proposed approach is experimentally verified on a 2.2 kW synchronous reluctance motor prototype. The results show that the id, iq commissioning domain is substantially extended, resulting in more accurate flux maps. Moreover, self-tuning of the method is addressed and possible causes of error are analyzed and commented.
File in questo prodotto:
File Dimensione Formato  
08362698.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 4.46 MB
Formato Adobe PDF
4.46 MB Adobe PDF Visualizza/Apri
08362698.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 4.48 MB
Formato Adobe PDF
4.48 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2709772
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo