Visual search systems are very popular applications, but on-line versions in 3G wireless environments suffer from network constraint like unstable or limited bandwidth that entail latency in query delivery, significantly degenerating the user’s experience. An alternative is to exploit the ability of the newest mobile devices to perform heterogeneous activities, like not only creating but also processing images. Visual feature extraction and compression can be performed on on-board Graphical Processing Units (GPUs), making smartphones capable of detecting a generic object (matching) in an exact way or of performing a classification activity. The latest trends in visual search have resulted in dedicated efforts in MPEG standardization, namely the MPEG CDVS (Compact Descriptor for Visual Search) standard. CDVS is an ISO/IEC standard used to extract a compressed descriptor. As regards to classification, in recent years neural networks have acquired an impressive importance and have been applied to several domains. This thesis focuses on the use of Deep Neural networks to classify images by means of Deep learning. Implementing visual search algorithms and deep learning-based classification on embedded environments is not a mere code-porting activity. Recent embedded devices are equipped with a powerful but limited number of resources, like development boards such as GPGPUs. GPU architectures fit particularly well, because they allow to execute more operations in parallel, following the SIMD (Single Instruction Multiple Data) paradigm. Nonetheless, it is necessary to make good design choices for the best use of available hardware and memory. For visual search, following the MPEG CDVS standard, the contribution of this thesis is an efficient feature computation phase, a parallel CDVS detector, completely implemented on embedded devices supporting the OpenCL framework. Algorithmic choices and implementation details to target the intrinsic characteristics of the selected embedded platforms are presented and discussed. Experimental results on several GPUs show that the GPU-based solution is up to 7× faster than the CPU-based one. This speed-up opens new visual search scenarios exploiting entire real-time on-board computations with no data transfer. As regards to the use of Deep convolutional neural networks for off-line image classification, their computational and memory requirements are huge, and this is an issue on embedded devices. Most of the complexity derives from the convolutional layers and in particular from the matrix multiplications they entail. The contribution of this thesis is a self-contained implementation to image classification providing common layers used in neural networks. The approach relies on a heterogeneous CPU-GPU scheme for performing convolutions in the transform domain. Experimental results show that the heterogeneous scheme described in this thesis boasts a 50× speedup over the CPU-only reference and outperforms a GPU-based reference by 2×, while slashing the power consumption by nearly 30%.
Visual Analysis Algorithms for Embedded Systems / Patti, Denis. - (2018 Jun 06).
Visual Analysis Algorithms for Embedded Systems
PATTI, DENIS
2018
Abstract
Visual search systems are very popular applications, but on-line versions in 3G wireless environments suffer from network constraint like unstable or limited bandwidth that entail latency in query delivery, significantly degenerating the user’s experience. An alternative is to exploit the ability of the newest mobile devices to perform heterogeneous activities, like not only creating but also processing images. Visual feature extraction and compression can be performed on on-board Graphical Processing Units (GPUs), making smartphones capable of detecting a generic object (matching) in an exact way or of performing a classification activity. The latest trends in visual search have resulted in dedicated efforts in MPEG standardization, namely the MPEG CDVS (Compact Descriptor for Visual Search) standard. CDVS is an ISO/IEC standard used to extract a compressed descriptor. As regards to classification, in recent years neural networks have acquired an impressive importance and have been applied to several domains. This thesis focuses on the use of Deep Neural networks to classify images by means of Deep learning. Implementing visual search algorithms and deep learning-based classification on embedded environments is not a mere code-porting activity. Recent embedded devices are equipped with a powerful but limited number of resources, like development boards such as GPGPUs. GPU architectures fit particularly well, because they allow to execute more operations in parallel, following the SIMD (Single Instruction Multiple Data) paradigm. Nonetheless, it is necessary to make good design choices for the best use of available hardware and memory. For visual search, following the MPEG CDVS standard, the contribution of this thesis is an efficient feature computation phase, a parallel CDVS detector, completely implemented on embedded devices supporting the OpenCL framework. Algorithmic choices and implementation details to target the intrinsic characteristics of the selected embedded platforms are presented and discussed. Experimental results on several GPUs show that the GPU-based solution is up to 7× faster than the CPU-based one. This speed-up opens new visual search scenarios exploiting entire real-time on-board computations with no data transfer. As regards to the use of Deep convolutional neural networks for off-line image classification, their computational and memory requirements are huge, and this is an issue on embedded devices. Most of the complexity derives from the convolutional layers and in particular from the matrix multiplications they entail. The contribution of this thesis is a self-contained implementation to image classification providing common layers used in neural networks. The approach relies on a heterogeneous CPU-GPU scheme for performing convolutions in the transform domain. Experimental results show that the heterogeneous scheme described in this thesis boasts a 50× speedup over the CPU-only reference and outperforms a GPU-based reference by 2×, while slashing the power consumption by nearly 30%.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2709452
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo