Anion exchange membrane fuel cells (AEMFCs) are becoming more and more attractive due to their alkaline environment, being less aggressive and favorable to the use of low-cost materials. Furthermore, the alkaline medium displays enhanced alcohol oxidation reaction (AOR) kinetics, which favors the use of fuels different from hydrogen, ranging from alcohols to polyols, and enhanced oxygen reduction reaction (ORR) kinetics. This allows the use of non-noble transition metals to synthesize cathodic catalysts, avoiding the costly platinum-group metals (PGM). In particular, the most active catalysts developed so far are mostly synthesized by sacrificial support method (SSM), which allows the fine tuning of the morphology, favoring oxygen transport, water removal, density of Fe-Nx active sites, and thus an enhanced electrochemical ORR activity. This mini-review analyzes the best AEMFCs cell performance achieved so far in recent years when PGM-free catalysts based on Me-N-C (Me = Fe, Co) are used for ORR at the cathode side, for AEMFCs fed with hydrogen, methanol, and ethanol.

Recent trends on the application of PGM-free catalysts at the cathode of anion exchange membrane fuel cells / Osmieri, L.; Pezzolato, Lorenzo; Specchia, S.. - In: CURRENT OPINION IN ELECTROCHEMISTRY. - ISSN 2451-9103. - STAMPA. - 9:(2018), pp. 240-256. [10.1016/j.coelec.2018.05.011]

Recent trends on the application of PGM-free catalysts at the cathode of anion exchange membrane fuel cells

Osmieri, L.;PEZZOLATO, LORENZO;Specchia, S.
2018

Abstract

Anion exchange membrane fuel cells (AEMFCs) are becoming more and more attractive due to their alkaline environment, being less aggressive and favorable to the use of low-cost materials. Furthermore, the alkaline medium displays enhanced alcohol oxidation reaction (AOR) kinetics, which favors the use of fuels different from hydrogen, ranging from alcohols to polyols, and enhanced oxygen reduction reaction (ORR) kinetics. This allows the use of non-noble transition metals to synthesize cathodic catalysts, avoiding the costly platinum-group metals (PGM). In particular, the most active catalysts developed so far are mostly synthesized by sacrificial support method (SSM), which allows the fine tuning of the morphology, favoring oxygen transport, water removal, density of Fe-Nx active sites, and thus an enhanced electrochemical ORR activity. This mini-review analyzes the best AEMFCs cell performance achieved so far in recent years when PGM-free catalysts based on Me-N-C (Me = Fe, Co) are used for ORR at the cathode side, for AEMFCs fed with hydrogen, methanol, and ethanol.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2709105
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo