In this paper we discuss an extension of some results obtained by Serra and Tilli, in 2012 and 2016, concerning an original conjecture by De Giorgi on a purely minimization approach to the Cauchy problem for the defocusing nonlinear wave equation. Precisely, we show how to extend the techniques developed by Serra and Tilli for homogeneous hyperbolic nonlinear PDEs to the nonhomogeneous case, thus proving that the idea of De Giorgi yields in fact an effective approach to investigate general hyperbolic equations.

De Giorgi’s approach to hyperbolic Cauchy problems: The case of nonhomogeneous equations / Tentarelli, Lorenzo; Tilli, Paolo. - In: COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0360-5302. - STAMPA. - 43:4(2018), pp. 677-698. [10.1080/03605302.2018.1459686]

De Giorgi’s approach to hyperbolic Cauchy problems: The case of nonhomogeneous equations

Tentarelli Lorenzo;Tilli Paolo
2018

Abstract

In this paper we discuss an extension of some results obtained by Serra and Tilli, in 2012 and 2016, concerning an original conjecture by De Giorgi on a purely minimization approach to the Cauchy problem for the defocusing nonlinear wave equation. Precisely, we show how to extend the techniques developed by Serra and Tilli for homogeneous hyperbolic nonlinear PDEs to the nonhomogeneous case, thus proving that the idea of De Giorgi yields in fact an effective approach to investigate general hyperbolic equations.
File in questo prodotto:
File Dimensione Formato  
Tentarelli L., Tilli P., De Giorgi's approach to hyperbolic Cauchy problems: The case of nonhomogeneous equations, 2018.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 577.5 kB
Formato Adobe PDF
577.5 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Tentarelli_Tilli_revised.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 340.44 kB
Formato Adobe PDF
340.44 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2706154