In this paper we discuss an extension of some results obtained by Serra and Tilli, in 2012 and 2016, concerning an original conjecture by De Giorgi on a purely minimization approach to the Cauchy problem for the defocusing nonlinear wave equation. Precisely, we show how to extend the techniques developed by Serra and Tilli for homogeneous hyperbolic nonlinear PDEs to the nonhomogeneous case, thus proving that the idea of De Giorgi yields in fact an effective approach to investigate general hyperbolic equations.
De Giorgi’s approach to hyperbolic Cauchy problems: The case of nonhomogeneous equations / Tentarelli, Lorenzo; Tilli, Paolo. - In: COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0360-5302. - STAMPA. - 43:4(2018), pp. 677-698.
Titolo: | De Giorgi’s approach to hyperbolic Cauchy problems: The case of nonhomogeneous equations |
Autori: | |
Data di pubblicazione: | 2018 |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1080/03605302.2018.1459686 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Tentarelli L., Tilli P., De Giorgi's approach to hyperbolic Cauchy problems: The case of nonhomogeneous equations, 2018.pdf | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia | |
Tentarelli_Tilli_revised.pdf | 2. Post-print / Author's Accepted Manuscript | ![]() | Visibile a tuttiVisualizza/Apri |
http://hdl.handle.net/11583/2706154