We consider an integrated mobile gaming platform, in which the mobile device (e.g., smartphone) of a player can offload some game tasks toward a server as well as some neighboring mobile devices. The advantages of such a platform are manyfold: it can lead to an improved game experience, to a better use of energy resources, and, while offloading tasks to other mobile users, to the exploitation of the unused computing and storage resources of the mobile equipments, thus reducing the bandwidth and computing costs of the overall system. In this context, we formulate the problem of offloading the game computational tasks as an optimization problem that minimizes the maximum energy consumption across a set of mobile devices, under the constraints of a maximum response time and a limited availability of computation, communication and storage resources. In light of the problem complexity, we then propose a heuristic, called TAME, which is shown to closely approximate the optimal solution in all scenarios we considered. TAME also outperforms state-of-the-art algorithms under both synthetic and real scenarios, which have been devised based on a realistic and detailed energy consumption model for computation and communication resources. Our results, although tailored to mobile gaming, could be extended to other applications where it may be beneficial to offload computational and storage tasks through device-to-device communications, as enabled by Wi-Fi, Bluetooth, or the upcoming 5G technology.

TAME: an Efficient Task Allocation Algorithm for Integrated Mobile Gaming / Zhang, Tianzhu; Chiasserini, Carla Fabiana; Giaccone, Paolo. - In: IEEE SYSTEMS JOURNAL. - ISSN 1932-8184. - STAMPA. - (2019). [10.1109/JSYST.2018.2829496]

TAME: an Efficient Task Allocation Algorithm for Integrated Mobile Gaming

Tianzhu Zhang;Carla Fabiana Chiasserini;Paolo Giaccone
2019

Abstract

We consider an integrated mobile gaming platform, in which the mobile device (e.g., smartphone) of a player can offload some game tasks toward a server as well as some neighboring mobile devices. The advantages of such a platform are manyfold: it can lead to an improved game experience, to a better use of energy resources, and, while offloading tasks to other mobile users, to the exploitation of the unused computing and storage resources of the mobile equipments, thus reducing the bandwidth and computing costs of the overall system. In this context, we formulate the problem of offloading the game computational tasks as an optimization problem that minimizes the maximum energy consumption across a set of mobile devices, under the constraints of a maximum response time and a limited availability of computation, communication and storage resources. In light of the problem complexity, we then propose a heuristic, called TAME, which is shown to closely approximate the optimal solution in all scenarios we considered. TAME also outperforms state-of-the-art algorithms under both synthetic and real scenarios, which have been devised based on a realistic and detailed energy consumption model for computation and communication resources. Our results, although tailored to mobile gaming, could be extended to other applications where it may be beneficial to offload computational and storage tasks through device-to-device communications, as enabled by Wi-Fi, Bluetooth, or the upcoming 5G technology.
File in questo prodotto:
File Dimensione Formato  
main.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 701.54 kB
Formato Adobe PDF
701.54 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2706037
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo