In this paper, we present an extensive analysis of the performance degradation in MOSFET based circuits. The physical effects that we consider are the random dopant fluctuation (RDF), the oxide thickness fluctuation (OTF) and the Hot-carrier-Instability (HCI). The work that we propose is based on two main key points: First, the performance degradation is studied considering BULK, Silicon-On-Insulator (SOI) and Double Gate (DG) MOSFET technologies. The analysis considers technology nodes from 45nm to 11nm. For the HCI effect we consider also the time-dependent evolution of the parameters of the circuit. Second, the analysis is performed from transistor level to gate level. Models are used to evaluate the variation of transistor’s key parameters, and how these variation affects performance at gate level as well.The work here presented was obtained using TAMTAMS Web, an open and publicly available framework for analysis of circuits based on transistors. The use of TAMTAMS Web greatly increases the value of this work, given that the analysis can be easily extended and improved in both complexity and depth.
A Unified Approach for Performance Degradation Analysis from Transistor to Gate Level / Hussain, Izhar; Vacca, Marco; Riente, Fabrizio. - In: INTERNATIONAL JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING. - ISSN 2088-8708. - ELETTRONICO. - 8:1(2018), pp. 412-420. [10.11591/ijece.v8i1.pp412-420]
A Unified Approach for Performance Degradation Analysis from Transistor to Gate Level
Izhar Hussain;Marco Vacca;Fabrizio Riente
2018
Abstract
In this paper, we present an extensive analysis of the performance degradation in MOSFET based circuits. The physical effects that we consider are the random dopant fluctuation (RDF), the oxide thickness fluctuation (OTF) and the Hot-carrier-Instability (HCI). The work that we propose is based on two main key points: First, the performance degradation is studied considering BULK, Silicon-On-Insulator (SOI) and Double Gate (DG) MOSFET technologies. The analysis considers technology nodes from 45nm to 11nm. For the HCI effect we consider also the time-dependent evolution of the parameters of the circuit. Second, the analysis is performed from transistor level to gate level. Models are used to evaluate the variation of transistor’s key parameters, and how these variation affects performance at gate level as well.The work here presented was obtained using TAMTAMS Web, an open and publicly available framework for analysis of circuits based on transistors. The use of TAMTAMS Web greatly increases the value of this work, given that the analysis can be easily extended and improved in both complexity and depth.File | Dimensione | Formato | |
---|---|---|---|
document.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
3.66 MB
Formato
Adobe PDF
|
3.66 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2705707
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo