This paper deals with continuous-time opinion dynamics that feature the interplay of continuous opinions and discrete behaviors. In our model, the opinion of one individual is only influenced by the behaviors of fellow individuals. The key technical difficulty in the study of these dynamics is that the right-hand sides of the equations are discontinuous and thus their solutions must be intended in some generalized sense: in our analysis, we consider both Carathéodory and Krasovskii solutions. We first prove the existence and completeness of Carathéodory solutions from every initial condition and we highlight a pathological behavior of Carathéodory solutions, which can converge to points that are not (Carathéodory) equilibria. Notably, such points can be arbitrarily far from consensus and indeed simulations show that convergence to nonconsensus configurations is common. In order to cope with these pathological attractors, we study Krasovskii solutions. We give an estimate of the asymptotic distance of all Krasovskii solutions from consensus and we prove its tightness by an example of equilibrium such that this distance is quadratic in the number of agents. This fact implies that quantization can drastically destroy consensus. However, consensus is guaranteed in some special cases, for instance, when the communication among the individuals is described by either a complete or a complete bipartite graph.

Consensus and Disagreement: The Role of Quantized Behaviors in Opinion Dynamics / Ceragioli, Francesca; Frasca, Paolo. - In: SIAM JOURNAL ON CONTROL AND OPTIMIZATION. - ISSN 0363-0129. - 56:2(2018), pp. 1058-1080. [10.1137/16M1083402]

Consensus and Disagreement: The Role of Quantized Behaviors in Opinion Dynamics

Ceragioli, Francesca;
2018

Abstract

This paper deals with continuous-time opinion dynamics that feature the interplay of continuous opinions and discrete behaviors. In our model, the opinion of one individual is only influenced by the behaviors of fellow individuals. The key technical difficulty in the study of these dynamics is that the right-hand sides of the equations are discontinuous and thus their solutions must be intended in some generalized sense: in our analysis, we consider both Carathéodory and Krasovskii solutions. We first prove the existence and completeness of Carathéodory solutions from every initial condition and we highlight a pathological behavior of Carathéodory solutions, which can converge to points that are not (Carathéodory) equilibria. Notably, such points can be arbitrarily far from consensus and indeed simulations show that convergence to nonconsensus configurations is common. In order to cope with these pathological attractors, we study Krasovskii solutions. We give an estimate of the asymptotic distance of all Krasovskii solutions from consensus and we prove its tightness by an example of equilibrium such that this distance is quadratic in the number of agents. This fact implies that quantization can drastically destroy consensus. However, consensus is guaranteed in some special cases, for instance, when the communication among the individuals is described by either a complete or a complete bipartite graph.
File in questo prodotto:
File Dimensione Formato  
2018sicon.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 511.88 kB
Formato Adobe PDF
511.88 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2704180