Human aging is associated with a decline in skeletal muscle (SkM) function and a reduction in the number and activity of satellite cells (SCs), the resident stem cells. To study the connection between SC aging and muscle impairment, we analyze the whole genome of single SC clones of the leg muscle vastus lateralis from healthy individuals of different ages (21–78 years). We find an accumulation rate of 13 somatic mutations per genome per year, consistent with proliferation of SCs in the healthy adult muscle. SkM-expressed genes are protected from mutations, but aging results in an increase in mutations in exons and promoters, targeting genes involved in SC activity and muscle function. In agreement with SC mutations affecting the whole tissue, we detect a missense mutation in a SC propagating to the muscle. Our results suggest somatic mutagenesis in SCs as a driving force in the age-related decline of SkM function.

Somatic mutagenesis in satellite cells associates with human skeletal muscle aging / Franco, Irene; Johansson, Anna; Olsson, Karl; Vrtačnik, Peter; Lundin, Pär; Helgadottir, Hafdis T.; Larsson, Malin; Revêchon, Gwladys; Bosia, Carla; Pagnani, Andrea; Provero, Paolo; Gustafsson, Thomas; Fischer, Helene; Eriksson, Maria. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - ELETTRONICO. - 9:1(2018), p. 800. [10.1038/s41467-018-03244-6]

Somatic mutagenesis in satellite cells associates with human skeletal muscle aging

BOSIA, CARLA;Pagnani, Andrea;
2018

Abstract

Human aging is associated with a decline in skeletal muscle (SkM) function and a reduction in the number and activity of satellite cells (SCs), the resident stem cells. To study the connection between SC aging and muscle impairment, we analyze the whole genome of single SC clones of the leg muscle vastus lateralis from healthy individuals of different ages (21–78 years). We find an accumulation rate of 13 somatic mutations per genome per year, consistent with proliferation of SCs in the healthy adult muscle. SkM-expressed genes are protected from mutations, but aging results in an increase in mutations in exons and promoters, targeting genes involved in SC activity and muscle function. In agreement with SC mutations affecting the whole tissue, we detect a missense mutation in a SC propagating to the muscle. Our results suggest somatic mutagenesis in SCs as a driving force in the age-related decline of SkM function.
File in questo prodotto:
File Dimensione Formato  
s41467-018-03244-6.pdf

accesso aperto

Descrizione: 12 pages pdf file
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2703193