Research Objectives To investigate the suitability of a machine learning algorithm based on data collected using two wearable 3-axis accelerometers to predict the total Functional Ability Scale (FAS) score during the performance of a battery of motor tasks taken from the Wolf Motor Function Test (WMFT).

Estimating Clinical Scores From Wearable Sensor Data In Stroke Survivors / Meagher, Claire; Sapienza, Stefano; Adans-Dester, Catherine; O’Brien, Anne; Patel, Shyamal; Vergara-Diaz, Gloria; Demarchi, Danilo; Lee, Sunghoon; Hughes, Ann-Marie; Black-Schaffer, Randie; Burridge, Jane; Zafonte, Ross; Bonato, Paolo. - In: ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION. - ISSN 0003-9993. - 98:10(2017), p. e65. [10.1016/j.apmr.2017.08.202]

Estimating Clinical Scores From Wearable Sensor Data In Stroke Survivors

Sapienza, Stefano;Demarchi, Danilo;
2017

Abstract

Research Objectives To investigate the suitability of a machine learning algorithm based on data collected using two wearable 3-axis accelerometers to predict the total Functional Ability Scale (FAS) score during the performance of a battery of motor tasks taken from the Wolf Motor Function Test (WMFT).
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2702994
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo