Particle Swarm optimization (PSO) algorithm resolves constrained multi-parameter problems and is suitable for simultaneous optimization of linear and nonlinear problems, with the assumption that forward modeling is based on good understanding of ill-posed problem for geophysical inversion. We apply PSO for solving the geophysical inverse problem to infer an Earth model, i.e. the electrical resistivity at depth, consistent with the observed geophysical data. The method doesn't require an initial model and can be easily constrained, according to external information for each single sounding. The optimization process to estimate the model parameters from the electromagnetic soundings focuses on the discussion of the objective function to be minimized. We discuss the possibility to introduce in the objective function vertical and lateral constraints, with an Occam-like regularization. A sensitivity analysis allowed us to check the performance of the algorithm. The reliability of the approach is tested on synthetic, real Audio-Magnetotelluric (AMT) and Long Period MT data. The method appears able to solve complex problems and allows us to estimate the a posteriori distribution of the model parameters.

On the optimization of electromagnetic geophysical data: Application of the PSO algorithm / Godio, A.; Santilano, A.. - In: JOURNAL OF APPLIED GEOPHYSICS. - ISSN 0926-9851. - ELETTRONICO. - 148:(2018), pp. 163-174. [10.1016/j.jappgeo.2017.11.016]

On the optimization of electromagnetic geophysical data: Application of the PSO algorithm

Godio, A.;
2018

Abstract

Particle Swarm optimization (PSO) algorithm resolves constrained multi-parameter problems and is suitable for simultaneous optimization of linear and nonlinear problems, with the assumption that forward modeling is based on good understanding of ill-posed problem for geophysical inversion. We apply PSO for solving the geophysical inverse problem to infer an Earth model, i.e. the electrical resistivity at depth, consistent with the observed geophysical data. The method doesn't require an initial model and can be easily constrained, according to external information for each single sounding. The optimization process to estimate the model parameters from the electromagnetic soundings focuses on the discussion of the objective function to be minimized. We discuss the possibility to introduce in the objective function vertical and lateral constraints, with an Occam-like regularization. A sensitivity analysis allowed us to check the performance of the algorithm. The reliability of the approach is tested on synthetic, real Audio-Magnetotelluric (AMT) and Long Period MT data. The method appears able to solve complex problems and allows us to estimate the a posteriori distribution of the model parameters.
File in questo prodotto:
File Dimensione Formato  
2018 on the optimization 1-s2.0-S0926985117300599-main.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.14 MB
Formato Adobe PDF
2.14 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2702028
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo