We propose a population balance model coupled with a mass transfer model to simulate the simultaneous shrinkage and breakage of particles during the reactive dissolution of particle agglomerates in stirred tank. The high-order moment-conserving method of classes is adopted to solve the population balance model. In the mass transfer model, the driving force is estimated by considering the physical constraints including electroneutrality, water dissociation and dissolution equilibrium. The simulation results, including the concentration and the particle size distribution of the final products, were validated by experiments carried out in a laboratory scale stirred tank. The unknown physical parameters in the particle breakage model were fitted against the experimental data. The results underline the importance of particle breakage in the reactive dissolution modeling under the investigated operating conditions. Several daughter size distributions functions found in literature were tested. Among them, the beta distribution provides the most flexible way to describe breakage of the particle agglomerates.

Population balance model and experimental validation for reactive dissolution of particle agglomerates / Zhao, Wenli; Jama, Mohamed Ali; Buffo, Antonio; Alopaeus, Ville. - In: COMPUTERS & CHEMICAL ENGINEERING. - ISSN 0098-1354. - 108:(2018), pp. 240-249. [10.1016/j.compchemeng.2017.09.019]

Population balance model and experimental validation for reactive dissolution of particle agglomerates

Buffo, Antonio;
2018

Abstract

We propose a population balance model coupled with a mass transfer model to simulate the simultaneous shrinkage and breakage of particles during the reactive dissolution of particle agglomerates in stirred tank. The high-order moment-conserving method of classes is adopted to solve the population balance model. In the mass transfer model, the driving force is estimated by considering the physical constraints including electroneutrality, water dissociation and dissolution equilibrium. The simulation results, including the concentration and the particle size distribution of the final products, were validated by experiments carried out in a laboratory scale stirred tank. The unknown physical parameters in the particle breakage model were fitted against the experimental data. The results underline the importance of particle breakage in the reactive dissolution modeling under the investigated operating conditions. Several daughter size distributions functions found in literature were tested. Among them, the beta distribution provides the most flexible way to describe breakage of the particle agglomerates.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2701314
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo