By using variational wave functions and quantum Monte Carlo techniques, we investigate the interplay between electron-electron and electron-phonon interactions in the two-dimensional Hubbard-Holstein model. Here, the ground-state phase diagram is triggered by several energy scales, i.e., the electron hopping t, the on-site electron-electron interaction U, the phonon energy ω0, and the electron-phonon coupling g. At half filling, the ground state is an antiferromagnetic insulator for U≳2g2/ω0, while it is a charge-density-wave (or bipolaronic) insulator for U≲2g2/ω0. In addition to these phases, we find a superconducting phase that intrudes between them. For ω0/t=1, superconductivity emerges when both U/t and 2g2/tω0 are small; then, by increasing the value of the phonon energy ω0, it extends along the transition line between antiferromagnetic and charge-density-wave insulators. Away from half filling, phase separation occurs when doping the charge-density-wave insulator, while a uniform (superconducting) ground state is found when doping the superconducting phase. In the analysis of finite-size effects, it is extremely important to average over twisted boundary conditions, especially in the weak-coupling limit and in the doped case.

Superconductivity, charge-density waves, antiferromagnetism, and phase separation in the Hubbard-Holstein model / Karakuzu, Seher; Tocchio, Luca F.; Sorella, Sandro; Becca, Federico. - In: PHYSICAL REVIEW. B. - ISSN 2469-9950. - 96:20(2017), pp. 205145-1-205145-10. [10.1103/PhysRevB.96.205145]

Superconductivity, charge-density waves, antiferromagnetism, and phase separation in the Hubbard-Holstein model

Tocchio, Luca F.;Becca, Federico
2017

Abstract

By using variational wave functions and quantum Monte Carlo techniques, we investigate the interplay between electron-electron and electron-phonon interactions in the two-dimensional Hubbard-Holstein model. Here, the ground-state phase diagram is triggered by several energy scales, i.e., the electron hopping t, the on-site electron-electron interaction U, the phonon energy ω0, and the electron-phonon coupling g. At half filling, the ground state is an antiferromagnetic insulator for U≳2g2/ω0, while it is a charge-density-wave (or bipolaronic) insulator for U≲2g2/ω0. In addition to these phases, we find a superconducting phase that intrudes between them. For ω0/t=1, superconductivity emerges when both U/t and 2g2/tω0 are small; then, by increasing the value of the phonon energy ω0, it extends along the transition line between antiferromagnetic and charge-density-wave insulators. Away from half filling, phase separation occurs when doping the charge-density-wave insulator, while a uniform (superconducting) ground state is found when doping the superconducting phase. In the analysis of finite-size effects, it is extremely important to average over twisted boundary conditions, especially in the weak-coupling limit and in the doped case.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2697665
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo