For the Poisson problem in two dimensions, we consider the standard adaptive finiteelement loop solve, estimate, mark, refine, with estimate being implemented using thep-robust equilibrated flux estimator, and, mark being Dörfler marking. As a refinementstrategyweemployp-refinement.Weinvestigatethequestionbywhichamountthelocalpolynomial degree on any marked patch has to be incremented in order to achieve ap-independent error reduction. We show that the analysis can be transferred from thepatchestoareferencetriangle,andthereinweprovideclear-cutcomputationalevidencethat any increment proportional to the polynomial degree (for any fixed proportionalityconstant)yieldsthedesiredreduction.Theresultingadaptivemethodcanbeturnedintoaninstanceoptimalhp-adaptivemethodbytheadditionofacoarseningroutine.

On p-robust saturation for hp-AFEM / Canuto, Claudio; Nochetto, Ricardo H.; Stevenson, Rob; Verani, Marco. - In: COMPUTERS & MATHEMATICS WITH APPLICATIONS. - ISSN 0898-1221. - STAMPA. - 73:9(2017), pp. 2004-2022. [10.1016/j.camwa.2017.02.035]

On p-robust saturation for hp-AFEM

Canuto, Claudio;
2017

Abstract

For the Poisson problem in two dimensions, we consider the standard adaptive finiteelement loop solve, estimate, mark, refine, with estimate being implemented using thep-robust equilibrated flux estimator, and, mark being Dörfler marking. As a refinementstrategyweemployp-refinement.Weinvestigatethequestionbywhichamountthelocalpolynomial degree on any marked patch has to be incremented in order to achieve ap-independent error reduction. We show that the analysis can be transferred from thepatchestoareferencetriangle,andthereinweprovideclear-cutcomputationalevidencethat any increment proportional to the polynomial degree (for any fixed proportionalityconstant)yieldsthedesiredreduction.Theresultingadaptivemethodcanbeturnedintoaninstanceoptimalhp-adaptivemethodbytheadditionofacoarseningroutine.
File in questo prodotto:
File Dimensione Formato  
ComputersandMathematicswithApplications.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 515.96 kB
Formato Adobe PDF
515.96 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2697408
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo