Discrete-time two-valued processes are of paramount importance in Information Engineering and their analysis is usually addressed assuming they have at most the memory of one step in the past. Since this is a quite limiting assumption, a general analytic formula is given here for the spectrum of stochastic antipodal processes with finite memory m >= 1. The formula is derived within a generalized Markov framework and depends on the eigenstructure of a suitably defined transition matrix that is also exploited to give ergodicity conditions. The complexity of the overall analysis depends on the size of such matrix which is exponential in m. Within that framework a slightly less general but more tractable scheme for the generation of antipodal processes with prescribed spectral profile is introduced leveraging on a linear probability feedback. For such a scheme, whose complexity is linear in m, an alternative spectrum formula is derived as well as a synthesis procedure going from spectrum specification to feedback filter design. Both the general case and the linear probability feedback scheme are exemplified in some special cases.
Memory-m antipodal processes: Spectral analysis and synthesis / Rovatti, R.; Mazzini, G.; Setti, G.. - In: IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS. I, REGULAR PAPERS. - ISSN 1549-8328. - STAMPA. - 56:1(2009), pp. 156-167. [10.1109/TCSI.2008.920986]
Memory-m antipodal processes: Spectral analysis and synthesis
G. Setti
2009
Abstract
Discrete-time two-valued processes are of paramount importance in Information Engineering and their analysis is usually addressed assuming they have at most the memory of one step in the past. Since this is a quite limiting assumption, a general analytic formula is given here for the spectrum of stochastic antipodal processes with finite memory m >= 1. The formula is derived within a generalized Markov framework and depends on the eigenstructure of a suitably defined transition matrix that is also exploited to give ergodicity conditions. The complexity of the overall analysis depends on the size of such matrix which is exponential in m. Within that framework a slightly less general but more tractable scheme for the generation of antipodal processes with prescribed spectral profile is introduced leveraging on a linear probability feedback. For such a scheme, whose complexity is linear in m, an alternative spectrum formula is derived as well as a synthesis procedure going from spectrum specification to feedback filter design. Both the general case and the linear probability feedback scheme are exemplified in some special cases.File | Dimensione | Formato | |
---|---|---|---|
TCASIMemorym.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
536.94 kB
Formato
Adobe PDF
|
536.94 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2696648
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo