The second and the third order anisotropic flow, V-2 and V-3, are mostly determined by the corresponding initial spatial anisotropy coefficients, epsilon(2) and epsilon(3), in the initial density distribution. In addition to their dependence on the same order initial anisotropy coefficient, higher order anisotropic flow, Vn(n > 3), can also have a significant contribution from lower order initial anisotropy coefficients, which leads to mode-coupling effects. In this Letter we investigate the linear and non-linear modes in higher order anisotropic flow V-n for n = 4, 5, 6 with the ALICE detector at the Large Hadron Collider. The measurements are done for particles in the pseudorapidity range |eta| < 0.8 and the transverse momentum range 0.2 < p(T)< 5.0 GeV/c as a function of collision centrality. The results are compared with theoretical calculations and provide important constraints on the initial conditions, including initial spatial geometry and its fluctuations, as well as the ratio of the shear viscosity to entropy density of the produced system. (C) 2017 The Author(s). Published by Elsevier B.V.

Linear and non-linear flow mode in Pb-Pb collisions at root sNN=2.76 TeV / Acharya, S; Adamova, D.; Adolfson, J; Aggarwal, M.; Rinella, G.; Agnello, M.; Agrawal, N; Ahammed, Z.; Ahmad, N.; Ahn, S. U.; Aiola, S.; Bedda, C.; Bufalino, S.; Concas, M.; Grosa, F.; Ravasenga, I.. - In: PHYSICS LETTERS. SECTION B. - ISSN 0370-2693. - STAMPA. - 773:(2017), pp. 68-80. [10.1016/j.physletb.2017.07.060]

Linear and non-linear flow mode in Pb-Pb collisions at root sNN=2.76 TeV

Agnello, M.;Bufalino, S.;Concas, M.;Grosa, F.;Ravasenga, I.
2017

Abstract

The second and the third order anisotropic flow, V-2 and V-3, are mostly determined by the corresponding initial spatial anisotropy coefficients, epsilon(2) and epsilon(3), in the initial density distribution. In addition to their dependence on the same order initial anisotropy coefficient, higher order anisotropic flow, Vn(n > 3), can also have a significant contribution from lower order initial anisotropy coefficients, which leads to mode-coupling effects. In this Letter we investigate the linear and non-linear modes in higher order anisotropic flow V-n for n = 4, 5, 6 with the ALICE detector at the Large Hadron Collider. The measurements are done for particles in the pseudorapidity range |eta| < 0.8 and the transverse momentum range 0.2 < p(T)< 5.0 GeV/c as a function of collision centrality. The results are compared with theoretical calculations and provide important constraints on the initial conditions, including initial spatial geometry and its fluctuations, as well as the ratio of the shear viscosity to entropy density of the produced system. (C) 2017 The Author(s). Published by Elsevier B.V.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2695133
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo