Traffic capture and analysis is key to many domains including network management, security and network forensics. Traditionally, it is performed by a dedicated device accessing traffic at a specific point within the network through a link tap or a port of a node mirroring packets. This approach is problematic because the dedicated device must be equipped with a large amount of computation and storage resources to store and analyze packets. Alternatively, in order to achieve scalability, analysis can be performed by a cluster of hosts. However, this is normally located at a remote location with respect to the observation point, hence requiring to move across the network a large volume of captured traffic. To address this problem, this paper presents an algorithm to distribute the task of capturing, processing and storing packets traversing a network across multiple packet forwarding nodes (e.g., IP routers). Essentially, our solution allows individual nodes on the path of a flow to operate on subsets of packets of that flow in a completely distributed and decentralized manner. The algorithm ensures that each packet is processed by n nodes, where n can be set to 1 to minimize overhead or to a higher value to achieve redundancy. Nodes create a distributed index that enables efficient retrieval of packets they store (e.g., for forensics applications). Finally, the basic principles of the presented solution can also be applied, with minimal changes, to the distributed execution of generic tasks on data flowing through a network of nodes with processing and storage capabilities. This has applications in various fields ranging from Fog Computing, to microservice architectures and the Internet of Things.
Packet Capture and Analysis on MEDINA, a Massively Distributed Network Data Caching Platform / Sapio, Amedeo; Baldi, Mario; Risso, FULVIO GIOVANNI OTTAVIO; Anand, Narendra; Nucci, Antonio. - In: PARALLEL PROCESSING LETTERS. - ISSN 0129-6264. - ELETTRONICO. - 27:03-04(2017), pp. 1-18. [10.1142/S0129626417500104]
Packet Capture and Analysis on MEDINA, a Massively Distributed Network Data Caching Platform
AMEDEO SAPIO;MARIO BALDI;FULVIO RISSO;ANTONIO NUCCI
2017
Abstract
Traffic capture and analysis is key to many domains including network management, security and network forensics. Traditionally, it is performed by a dedicated device accessing traffic at a specific point within the network through a link tap or a port of a node mirroring packets. This approach is problematic because the dedicated device must be equipped with a large amount of computation and storage resources to store and analyze packets. Alternatively, in order to achieve scalability, analysis can be performed by a cluster of hosts. However, this is normally located at a remote location with respect to the observation point, hence requiring to move across the network a large volume of captured traffic. To address this problem, this paper presents an algorithm to distribute the task of capturing, processing and storing packets traversing a network across multiple packet forwarding nodes (e.g., IP routers). Essentially, our solution allows individual nodes on the path of a flow to operate on subsets of packets of that flow in a completely distributed and decentralized manner. The algorithm ensures that each packet is processed by n nodes, where n can be set to 1 to minimize overhead or to a higher value to achieve redundancy. Nodes create a distributed index that enables efficient retrieval of packets they store (e.g., for forensics applications). Finally, the basic principles of the presented solution can also be applied, with minimal changes, to the distributed execution of generic tasks on data flowing through a network of nodes with processing and storage capabilities. This has applications in various fields ranging from Fog Computing, to microservice architectures and the Internet of Things.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2693767
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo