This paper presents refined one-dimensional models with node-dependent kinematics. The three-dimensional displacement field is discretized into two domains, namely cross-section domain and axis domain. The mechanical behaviors of the beam can be firstly captured by the cross-section functions then interpolated by the nodal shape functions of the beam element. Such a feature makes it possible to adopt different types of cross-section functions on each element node, obtaining node-dependent kinematic finite element models. Such models can integrate Taylor-based and Lagrange-type nodal kinematics on element level, bridging a less-refined model to a more refined model without using special coupling methods. FE governing equations of node-dependent models are derived by applying the Carrera Unified Formulation. Some numerical cases on metallic and composite beam-like structures are studied to demonstrate the effectiveness of node-dependent models in bridging a locally refined model to a global model when local effects should be accounted for.
Finite element models with node-dependent kinematics for the analysis of composite beam structures / Carrera, E.; Zappino, E.; Li, G.. - In: COMPOSITES. PART B, ENGINEERING. - ISSN 1359-8368. - 132:(2018), pp. 35-48. [10.1016/j.compositesb.2017.08.008]
Finite element models with node-dependent kinematics for the analysis of composite beam structures
Carrera, E.;Zappino, E.;Li, G.
2018
Abstract
This paper presents refined one-dimensional models with node-dependent kinematics. The three-dimensional displacement field is discretized into two domains, namely cross-section domain and axis domain. The mechanical behaviors of the beam can be firstly captured by the cross-section functions then interpolated by the nodal shape functions of the beam element. Such a feature makes it possible to adopt different types of cross-section functions on each element node, obtaining node-dependent kinematic finite element models. Such models can integrate Taylor-based and Lagrange-type nodal kinematics on element level, bridging a less-refined model to a more refined model without using special coupling methods. FE governing equations of node-dependent models are derived by applying the Carrera Unified Formulation. Some numerical cases on metallic and composite beam-like structures are studied to demonstrate the effectiveness of node-dependent models in bridging a locally refined model to a global model when local effects should be accounted for.| File | Dimensione | Formato | |
|---|---|---|---|
| ND_Beam_R2.pdf Open Access dal 27/08/2019 
											Tipologia:
											2. Post-print / Author's Accepted Manuscript
										 
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
										Dimensione
										2.24 MB
									 
										Formato
										Adobe PDF
									 | 2.24 MB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2692893
			
		
	
	
	
			      	Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
