e study stability properties of f–minimal hypersurfaces isometrically immersed in weighted manifolds with non–negative Bakry–Emery Ricci ´ curvature under volume growth conditions. Moreover, exploiting a weighted version of a finiteness result and the adaptation to this setting of Li–Tam theory, we investigate the topology at infinity of f–minimal hypersurfaces. On the way, we prove a new comparison result in weighted geometry and we provide a general weighted L 1–Sobolev inequality for hypersurfaces in Cartan– Hadamard weighted manifolds, satisfying suitable restrictions on the weight function.

Stability properties and topology at infinity of f-minimal hypersurfaces / Impera, Debora; Rimoldi, Michele. - In: GEOMETRIAE DEDICATA. - ISSN 0046-5755. - 178:1(2015), pp. 21-47. [10.1007/s10711-014-9999-6]

Stability properties and topology at infinity of f-minimal hypersurfaces

Impera, Debora;RIMOLDI, MICHELE
2015

Abstract

e study stability properties of f–minimal hypersurfaces isometrically immersed in weighted manifolds with non–negative Bakry–Emery Ricci ´ curvature under volume growth conditions. Moreover, exploiting a weighted version of a finiteness result and the adaptation to this setting of Li–Tam theory, we investigate the topology at infinity of f–minimal hypersurfaces. On the way, we prove a new comparison result in weighted geometry and we provide a general weighted L 1–Sobolev inequality for hypersurfaces in Cartan– Hadamard weighted manifolds, satisfying suitable restrictions on the weight function.
File in questo prodotto:
File Dimensione Formato  
ImperaRimoldi_Stab&TopInffMinHypsrf_RevVers.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 425.19 kB
Formato Adobe PDF
425.19 kB Adobe PDF Visualizza/Apri
ImperaRimoldi_Stab&TopInffMinHypsrf_Offprint.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 776.51 kB
Formato Adobe PDF
776.51 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2690993