e study stability properties of f–minimal hypersurfaces isometrically immersed in weighted manifolds with non–negative Bakry–Emery Ricci ´ curvature under volume growth conditions. Moreover, exploiting a weighted version of a finiteness result and the adaptation to this setting of Li–Tam theory, we investigate the topology at infinity of f–minimal hypersurfaces. On the way, we prove a new comparison result in weighted geometry and we provide a general weighted L 1–Sobolev inequality for hypersurfaces in Cartan– Hadamard weighted manifolds, satisfying suitable restrictions on the weight function.
Stability properties and topology at infinity of f-minimal hypersurfaces / Impera, Debora; Rimoldi, Michele. - In: GEOMETRIAE DEDICATA. - ISSN 0046-5755. - 178:1(2015), pp. 21-47. [10.1007/s10711-014-9999-6]
Stability properties and topology at infinity of f-minimal hypersurfaces
Impera, Debora;RIMOLDI, MICHELE
2015
Abstract
e study stability properties of f–minimal hypersurfaces isometrically immersed in weighted manifolds with non–negative Bakry–Emery Ricci ´ curvature under volume growth conditions. Moreover, exploiting a weighted version of a finiteness result and the adaptation to this setting of Li–Tam theory, we investigate the topology at infinity of f–minimal hypersurfaces. On the way, we prove a new comparison result in weighted geometry and we provide a general weighted L 1–Sobolev inequality for hypersurfaces in Cartan– Hadamard weighted manifolds, satisfying suitable restrictions on the weight function.File | Dimensione | Formato | |
---|---|---|---|
ImperaRimoldi_Stab&TopInffMinHypsrf_RevVers.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
425.19 kB
Formato
Adobe PDF
|
425.19 kB | Adobe PDF | Visualizza/Apri |
ImperaRimoldi_Stab&TopInffMinHypsrf_Offprint.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
776.51 kB
Formato
Adobe PDF
|
776.51 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2690993