This article discusses the main provisions of the Guidelines on big data and data protection recently adopted by the Consultative Committee of the Council of Europe. After an analysis of the changes in data processing caused by the use of the predictive analytics, the author outlines the impact assessment model suggested by the Guidelines to tackles the potential risks of big data applications. This procedure of risk-assessment represents a key element to address the challenges of Big Data, since it goes beyond the traditional data protection impact assessment encompassing the social and ethical consequences of the use of data, which are the most important and critical aspects of the future algorithmic society.

Towards a Big Data regulation based on social and ethical values. The Guidelines of the Council of Europe (Hacia una regulación de los datos masivos basada en valores sociales y éticos. Las directrices del Consejo de Europa) / Mantelero, Alessandro. - In: REVISTA DE BIOÉTICA Y DERECHO. - ISSN 1886-5887. - STAMPA. - 41:(2017), pp. 67-84.

Towards a Big Data regulation based on social and ethical values. The Guidelines of the Council of Europe (Hacia una regulación de los datos masivos basada en valores sociales y éticos. Las directrices del Consejo de Europa)

MANTELERO, ALESSANDRO
2017

Abstract

This article discusses the main provisions of the Guidelines on big data and data protection recently adopted by the Consultative Committee of the Council of Europe. After an analysis of the changes in data processing caused by the use of the predictive analytics, the author outlines the impact assessment model suggested by the Guidelines to tackles the potential risks of big data applications. This procedure of risk-assessment represents a key element to address the challenges of Big Data, since it goes beyond the traditional data protection impact assessment encompassing the social and ethical consequences of the use of data, which are the most important and critical aspects of the future algorithmic society.
2017
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2687425
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo