Nano inclusion of various particles in cement-based materials has been widely investigated during the last decade, as they have the capability to enhance several properties of composites. However, obtaining nano-sized particles means a high expenditure of energy, related to their functionalization and grinding process. The main theme of this research is to evaluate the mechanical properties of cement-based composites with coarse particles of pyrolyzed hazelnut shells, already investigated at the nanoscale. In this research activity, the particle size distribution used is in the range from some micron up to 140 μm. The experimental results demonstrate that it is possible to use pyrolyzed materials with coarser particle size, guaranteeing the improvement of the mechanical properties in terms of flexural and compressive strength, but not in terms of ductility, as obtained by using smaller particles.

Influence of filler size on the mechanical properties of cement-based composites / Restuccia, Luciana; Ferro, GIUSEPPE ANDREA. - In: FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES. - ISSN 8756-758X. - (2018). [10.1111/ffe.12694]

Influence of filler size on the mechanical properties of cement-based composites

RESTUCCIA, LUCIANA;FERRO, GIUSEPPE ANDREA
2018

Abstract

Nano inclusion of various particles in cement-based materials has been widely investigated during the last decade, as they have the capability to enhance several properties of composites. However, obtaining nano-sized particles means a high expenditure of energy, related to their functionalization and grinding process. The main theme of this research is to evaluate the mechanical properties of cement-based composites with coarse particles of pyrolyzed hazelnut shells, already investigated at the nanoscale. In this research activity, the particle size distribution used is in the range from some micron up to 140 μm. The experimental results demonstrate that it is possible to use pyrolyzed materials with coarser particle size, guaranteeing the improvement of the mechanical properties in terms of flexural and compressive strength, but not in terms of ductility, as obtained by using smaller particles.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2686454
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo