In recent years, the concept of resilience has been introduced to the field of engineering as it relates to disaster mitigation and management. However, the built environment is only one element that supports community functionality. Maintaining community functionality during and after a disaster, defined as resilience, is influenced by multiple components. This report summarizes the research activities of the first two years of an ongoing collaboration between the Politecnico di Torino and the University of California, Berkeley, in the field of disaster resilience. Chapter 1 focuses on the economic dimension of disaster resilience with an application to the San Francisco Bay Area; Chapter 2 analyzes the option of using base-isolation systems to improve the resilience of hospitals and school buildings; Chapter 3 investigates the possibility to adopt discrete event simulation models and a meta-model to measure the resilience of the emergency department of a hospital; Chapter 4 applies the meta-model developed in Chapter 3 to the hospital network in the San Francisco Bay Area, showing the potential of the model for design purposes Chapter 5 uses a questionnaire combined with factorial analysis to evaluate the resilience of a hospital; Chapter 6 applies the concept of agent-based models to analyze the performance of socio-technical networks during an emergency. Two applications are shown: a museum and a train station; Chapter 7 defines restoration fragility functions as tools to measure uncertainties in the restoration process; and Chapter 8 focuses on modeling infrastructure interdependencies using temporal networks at different spatial scales.
Resilience of critical structures, infrastructure, and communities / Cimellaro, GIAN PAOLO; ZAMANI NOORI, Ali; Kammouh, Omar; Terzic, V.; Mahin, Stephen A.. - In: PEER reports. - ISSN 1547-0587X. - ELETTRONICO. - PEER Report No. 2016/08:(2016), pp. 1-334.
Resilience of critical structures, infrastructure, and communities
CIMELLARO, GIAN PAOLO;ZAMANI NOORI, ALI;KAMMOUH, OMAR;
2016
Abstract
In recent years, the concept of resilience has been introduced to the field of engineering as it relates to disaster mitigation and management. However, the built environment is only one element that supports community functionality. Maintaining community functionality during and after a disaster, defined as resilience, is influenced by multiple components. This report summarizes the research activities of the first two years of an ongoing collaboration between the Politecnico di Torino and the University of California, Berkeley, in the field of disaster resilience. Chapter 1 focuses on the economic dimension of disaster resilience with an application to the San Francisco Bay Area; Chapter 2 analyzes the option of using base-isolation systems to improve the resilience of hospitals and school buildings; Chapter 3 investigates the possibility to adopt discrete event simulation models and a meta-model to measure the resilience of the emergency department of a hospital; Chapter 4 applies the meta-model developed in Chapter 3 to the hospital network in the San Francisco Bay Area, showing the potential of the model for design purposes Chapter 5 uses a questionnaire combined with factorial analysis to evaluate the resilience of a hospital; Chapter 6 applies the concept of agent-based models to analyze the performance of socio-technical networks during an emergency. Two applications are shown: a museum and a train station; Chapter 7 defines restoration fragility functions as tools to measure uncertainties in the restoration process; and Chapter 8 focuses on modeling infrastructure interdependencies using temporal networks at different spatial scales.File | Dimensione | Formato | |
---|---|---|---|
FINAL_2016_08_cimellaro.compressed.pdf
accesso aperto
Descrizione: Technical Report
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
10.17 MB
Formato
Adobe PDF
|
10.17 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2685804
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo