We consider a Neumann-Robin spectral problem in a perforated domain Ωε. By homogenization techniques we find the suitable homogenized problem and we dis- cuss the asymptotics of eigenpairs, as the size of the perforation tends to zero. Our results involve an approach based on Viˇs´ık lemma and the Mosco convergence of eigenspaces. We prove that eigenpairs of our problem converge to eigenpairs of the homogenized problem with rate √ ε.

Spectral homogenization for a Robin-Neumann problem / Cancedda, Andrea. - In: BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA. - ISSN 1972-6724. - 10:2(2017), pp. 199-222. [10.1007/s40574-016-0075-z]

Spectral homogenization for a Robin-Neumann problem

CANCEDDA, ANDREA
2017

Abstract

We consider a Neumann-Robin spectral problem in a perforated domain Ωε. By homogenization techniques we find the suitable homogenized problem and we dis- cuss the asymptotics of eigenpairs, as the size of the perforation tends to zero. Our results involve an approach based on Viˇs´ık lemma and the Mosco convergence of eigenspaces. We prove that eigenpairs of our problem converge to eigenpairs of the homogenized problem with rate √ ε.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2683456
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo