In designing and optimizing new-generation nanomaterials and related quantum devices, dissipation versus decoherence phenomena are often accounted for via local scattering models, such as relaxation-time and Boltzmann-like schemes. Here we show that the use of such local scattering approaches within the Wigner-function formalism may lead to unphysical results, namely anomalous suppression of intersubband relaxation, incorrect thermalization dynamics, and violation of probability-density positivity. Furthermore, we propose a quantum-mechanical generalization of relaxation-time and Boltzmann-like models, resulting in nonlocal scattering superoperators that enable one to overcome such limitations.
Utilizza questo identificativo per citare o creare un link a questo documento:
http://hdl.handle.net/11583/2679884
Titolo: | Wigner-function formalism applied to semiconductor quantum devices: Need for nonlocal scattering models |
Autori: | |
Data di pubblicazione: | 2017 |
Rivista: | |
Abstract: | In designing and optimizing new-generation nanomaterials and related quantum devices, dissipation versus decoherence phenomena are often accounted for via local scattering models, such as relaxation-time and Boltzmann-like schemes. Here we show that the use of such local scattering approaches within the Wigner-function formalism may lead to unphysical results, namely anomalous suppression of intersubband relaxation, incorrect thermalization dynamics, and violation of probability-density positivity. Furthermore, we propose a quantum-mechanical generalization of relaxation-time and Boltzmann-like models, resulting in nonlocal scattering superoperators that enable one to overcome such limitations. |
Digital Object Identifier (DOI): | 10.1103/PhysRevB.96.115420 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Iotti-Dolcini-Rossi_PRB_96_115420_2017.pdf | Articolo principale | 2. Post-print | PUBBLICO - Tutti i diritti riservati | Visibile a tuttiVisualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.