This paper presents the design, fabrication and experimental characterization of an electro-thermally actuated microgripper suitable for single-cell manipulation. The analysis of the mechanical properties of cells is of great interest both in medicine and biology because the study of the cellular mechanical behaviour and resistance is necessary in these felds. Microgrippers (Bio-MEMS) have an important role in the manipulation of biological tissues and cells. In recent works, the research group simulated the mechanical behavior of grippers and the different actuation strategies. Considering the dimensional specifcations and targets imposed by actuation and biocompatibility, in this paper, a microgripper based on electro-thermal actuation is studied. Starting from previous numerical results, a novel SU8 structure is designed and realized according to the micro-fabrication constraints and then the structure is simulated using the fnite element method (FEM)-based thermostructural simulations in ANSYS. Therefore, the fabrication method and steps are presented and the gripper has been developed and tested. Finally, the tip displacements of the gripper, electro-thermally actuated in different operating conditions, are compared with those obtained by means of numerical FEM simulations. A good agreement is obtained between simulations and experimental results

Design and experimental testing of an electro-thermal microgripper for cell manipulation / Soma', Aurelio; Iamoni, Sonia; Voicu, Rodica; Muller, Raluca; Al Zandi, Muaiyd H. M.; Wang, Changhai. - In: MICROSYSTEM TECHNOLOGIES. - ISSN 0946-7076. - (2018), pp. 1-8. [10.1007/s00542-017-3460-3]

Design and experimental testing of an electro-thermal microgripper for cell manipulation

SOMA', AURELIO;IAMONI, SONIA;
2018

Abstract

This paper presents the design, fabrication and experimental characterization of an electro-thermally actuated microgripper suitable for single-cell manipulation. The analysis of the mechanical properties of cells is of great interest both in medicine and biology because the study of the cellular mechanical behaviour and resistance is necessary in these felds. Microgrippers (Bio-MEMS) have an important role in the manipulation of biological tissues and cells. In recent works, the research group simulated the mechanical behavior of grippers and the different actuation strategies. Considering the dimensional specifcations and targets imposed by actuation and biocompatibility, in this paper, a microgripper based on electro-thermal actuation is studied. Starting from previous numerical results, a novel SU8 structure is designed and realized according to the micro-fabrication constraints and then the structure is simulated using the fnite element method (FEM)-based thermostructural simulations in ANSYS. Therefore, the fabrication method and steps are presented and the gripper has been developed and tested. Finally, the tip displacements of the gripper, electro-thermally actuated in different operating conditions, are compared with those obtained by means of numerical FEM simulations. A good agreement is obtained between simulations and experimental results
File in questo prodotto:
File Dimensione Formato  
Design and experimental testing of an electro-thermal microgripper for cell manipulation.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.2 MB
Formato Adobe PDF
1.2 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11583/2677853
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo