In deeply scaled CMOS technologies, device aging causes transistor performance parameters to degrade over time. While reliable models to accurately assess these degradations are available for devices and circuits, the extension to these models for estimating the aging of microprocessor cores is not trivial and there is no well accepted model in the literature. This work proposes a methodology for deriving an NBTI-induced aging model for embedded cores. Since aging can only be determined on a netlist, we use an empirical approach based on characterizing the model using a set of open synthesizable embedded cores, which allows us to establish a link between the aging at the transistor level and the aging from the core perspective in terms of maximum frequency degradation. Using this approach, we were able to (1) prove the independence of the aging on the workloads which run by the cores, and (2) calculate upper and lower bounds for the “aging factor” that can be used for a generic embedded processor. Results show that our method yields very good accuracy in predicting the frequency degradation of cores due to NBTI aging effect, and can be used with confidence when the netlist of the cores is not available.

Empirical derivation of upper and lower bounds of NBTI aging for embedded cores / Chen, Yukai; Macii, Enrico; Poncino, Massimo. - In: MICROELECTRONICS RELIABILITY. - ISSN 0026-2714. - ELETTRONICO. - 80:(2018), pp. 294-305. [10.1016/j.microrel.2017.07.067]

Empirical derivation of upper and lower bounds of NBTI aging for embedded cores

CHEN, YUKAI;MACII, Enrico;PONCINO, MASSIMO
2018

Abstract

In deeply scaled CMOS technologies, device aging causes transistor performance parameters to degrade over time. While reliable models to accurately assess these degradations are available for devices and circuits, the extension to these models for estimating the aging of microprocessor cores is not trivial and there is no well accepted model in the literature. This work proposes a methodology for deriving an NBTI-induced aging model for embedded cores. Since aging can only be determined on a netlist, we use an empirical approach based on characterizing the model using a set of open synthesizable embedded cores, which allows us to establish a link between the aging at the transistor level and the aging from the core perspective in terms of maximum frequency degradation. Using this approach, we were able to (1) prove the independence of the aging on the workloads which run by the cores, and (2) calculate upper and lower bounds for the “aging factor” that can be used for a generic embedded processor. Results show that our method yields very good accuracy in predicting the frequency degradation of cores due to NBTI aging effect, and can be used with confidence when the netlist of the cores is not available.
File in questo prodotto:
File Dimensione Formato  
main.pdf

Open Access dal 23/07/2019

Descrizione: Main article
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 486.9 kB
Formato Adobe PDF
486.9 kB Adobe PDF Visualizza/Apri
1-s2.0-S0026271417303517-main.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.26 MB
Formato Adobe PDF
1.26 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2677292