Let $S$ be a surface with $p_g(S)=q(S)=0$ and endowed with a very ample line bundle $mathcal O_S(h)$ such that $h^1ig(S,mathcal O_S(h)ig)=0$. We show that $S$ supports special (often stable) Ulrich bundles of rank $2$, extending a recent result by A. Beauville. Moreover, we show that such an $S$ supports families of dimension $p$ of pairwise non--isomorphic, indecomposable, Ulrich bundles for arbitrary large $p$ except for very few cases. We also show that the same is true for each linearly normal non--special surface with $p_g(S)=q(S)=0$ in $p4$ of degree at least $4$, Enriques surface and anticanonical rational surface.
Special Ulrich bundles on non--special surfaces with $p_g=q=0$ / Casnati, Gianfranco. - In: INTERNATIONAL JOURNAL OF MATHEMATICS. - ISSN 0129-167X. - ELETTRONICO. - 28:5(2017). [10.1142/S0129167X17500616]
Special Ulrich bundles on non--special surfaces with $p_g=q=0$
CASNATI, GIANFRANCO
2017
Abstract
Let $S$ be a surface with $p_g(S)=q(S)=0$ and endowed with a very ample line bundle $mathcal O_S(h)$ such that $h^1ig(S,mathcal O_S(h)ig)=0$. We show that $S$ supports special (often stable) Ulrich bundles of rank $2$, extending a recent result by A. Beauville. Moreover, we show that such an $S$ supports families of dimension $p$ of pairwise non--isomorphic, indecomposable, Ulrich bundles for arbitrary large $p$ except for very few cases. We also show that the same is true for each linearly normal non--special surface with $p_g(S)=q(S)=0$ in $p4$ of degree at least $4$, Enriques surface and anticanonical rational surface.File | Dimensione | Formato | |
---|---|---|---|
s0129167x17500616.pdf
non disponibili
Descrizione: Articolo principale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
260.61 kB
Formato
Adobe PDF
|
260.61 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2676614
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo