Let $S$ be a surface with $p_g(S)=q(S)=0$ and endowed with a very ample line bundle $mathcal O_S(h)$ such that $h^1ig(S,mathcal O_S(h)ig)=0$. We show that $S$ supports special (often stable) Ulrich bundles of rank $2$, extending a recent result by A. Beauville. Moreover, we show that such an $S$ supports families of dimension $p$ of pairwise non--isomorphic, indecomposable, Ulrich bundles for arbitrary large $p$ except for very few cases. We also show that the same is true for each linearly normal non--special surface with $p_g(S)=q(S)=0$ in $p4$ of degree at least $4$, Enriques surface and anticanonical rational surface.

Special Ulrich bundles on non--special surfaces with $p_g=q=0$ / Casnati, Gianfranco. - In: INTERNATIONAL JOURNAL OF MATHEMATICS. - ISSN 0129-167X. - ELETTRONICO. - 28:5(2017). [10.1142/S0129167X17500616]

Special Ulrich bundles on non--special surfaces with $p_g=q=0$

CASNATI, GIANFRANCO
2017

Abstract

Let $S$ be a surface with $p_g(S)=q(S)=0$ and endowed with a very ample line bundle $mathcal O_S(h)$ such that $h^1ig(S,mathcal O_S(h)ig)=0$. We show that $S$ supports special (often stable) Ulrich bundles of rank $2$, extending a recent result by A. Beauville. Moreover, we show that such an $S$ supports families of dimension $p$ of pairwise non--isomorphic, indecomposable, Ulrich bundles for arbitrary large $p$ except for very few cases. We also show that the same is true for each linearly normal non--special surface with $p_g(S)=q(S)=0$ in $p4$ of degree at least $4$, Enriques surface and anticanonical rational surface.
File in questo prodotto:
File Dimensione Formato  
s0129167x17500616.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 260.61 kB
Formato Adobe PDF
260.61 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2676614
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo