We investigate the possibility of improving the p-Poincare inequality parallel to on the hyperbolic space, where p > 1. We prove several different, and independent, improved inequalities, one of which is a Poincare-Hardy inequality, namely an improvement of the best p-Poincare inequality in terms of the Hardy weight 1/r^p, r being geodesic distance from a given pole. Certain Hardy-Mazya type inequalities in the Euclidean half-space are also obtained.
Improved Lp-Poincaré inequalities on the hyperbolic space / Berchio, Elvise; D'Ambrosio, Lorenzo; Ganguly, Debdip; Grillo, Gabriele. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 157(2017), pp. 146-166.
Titolo: | Improved Lp-Poincaré inequalities on the hyperbolic space |
Autori: | |
Data di pubblicazione: | 2017 |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.na.2017.03.016 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
20170304_p_Laplacian.pdf | Articolo principale | 1. Preprint / Submitted Version | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia |
http://hdl.handle.net/11583/2675840