We investigate the possibility of improving the p-Poincare inequality parallel to on the hyperbolic space, where p > 1. We prove several different, and independent, improved inequalities, one of which is a Poincare-Hardy inequality, namely an improvement of the best p-Poincare inequality in terms of the Hardy weight 1/r^p, r being geodesic distance from a given pole. Certain Hardy-Mazya type inequalities in the Euclidean half-space are also obtained.
Improved Lp-Poincaré inequalities on the hyperbolic space / Berchio, Elvise; D'Ambrosio, Lorenzo; Ganguly, Debdip; Grillo, Gabriele. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 157:(2017), pp. 146-166. [10.1016/j.na.2017.03.016]
Improved Lp-Poincaré inequalities on the hyperbolic space
BERCHIO, ELVISE;
2017
Abstract
We investigate the possibility of improving the p-Poincare inequality parallel to on the hyperbolic space, where p > 1. We prove several different, and independent, improved inequalities, one of which is a Poincare-Hardy inequality, namely an improvement of the best p-Poincare inequality in terms of the Hardy weight 1/r^p, r being geodesic distance from a given pole. Certain Hardy-Mazya type inequalities in the Euclidean half-space are also obtained.| File | Dimensione | Formato | |
|---|---|---|---|
| 20170304_p_Laplacian.pdf accesso aperto 
											Descrizione: Articolo principale
										 
											Tipologia:
											1. Preprint / submitted version [pre- review]
										 
											Licenza:
											
											
												Pubblico - Tutti i diritti riservati
												
												
												
											
										 
										Dimensione
										579.19 kB
									 
										Formato
										Adobe PDF
									 | 579.19 kB | Adobe PDF | Visualizza/Apri | 
| 1-s2.0-S0362546X17301013-main (3).pdf accesso riservato 
											Descrizione: Articolo principale
										 
											Tipologia:
											2a Post-print versione editoriale / Version of Record
										 
											Licenza:
											
											
												Non Pubblico - Accesso privato/ristretto
												
												
												
											
										 
										Dimensione
										768.51 kB
									 
										Formato
										Adobe PDF
									 | 768.51 kB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2675840
			
		
	
	
	
			      	Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
