Underplatform dampers (UPDs) are still in use to reduce the vibration amplitude of turbine blades and to shift the position of resonant frequencies. The dynamics of blades with UPDs is nonlinear and the analysis is challenging from both the experimental and the numerical point of view. A key point in obtaining a predictive numerical tool is the choice of the correct contact parameters (contact stiffness and friction coefficient) that are required as input to the contact model. The paper presents different approaches to choose these parameters: the contact stiffness in normal and tangential direction are both calculated and measured. The calculation is based on the analytical models in literature, the measurements are carried out on a dedicated test rig. The friction coefficient is also measured. Test results of the forced response of the same bladed disk with UPDs are available for each blade, they come from an experimental campaign under controlled excitation and centrifugal force. The forced response of the bladed disk is not used as a mean to tune the contact parameters, but rather as a validation tool: the effect of the different choices of contact parameters in the code is highlighted by the comparison of the calculated and experimental forced response of the bladed disk.

On the choice of contact parameters for the forced response calculation of a bladed disk with underplatform dampers / Gastaldi, Chiara; Grossi, Emanuele; Berruti, TERESA MARIA. - In: JOURNAL OF THE GLOBAL POWER AND PROPULSION SOCIETY. - ISSN 2515-3080. - 1:(2017), pp. 1-15. [10.22261/5D19RH]

On the choice of contact parameters for the forced response calculation of a bladed disk with underplatform dampers

GASTALDI, CHIARA;BERRUTI, TERESA MARIA
2017

Abstract

Underplatform dampers (UPDs) are still in use to reduce the vibration amplitude of turbine blades and to shift the position of resonant frequencies. The dynamics of blades with UPDs is nonlinear and the analysis is challenging from both the experimental and the numerical point of view. A key point in obtaining a predictive numerical tool is the choice of the correct contact parameters (contact stiffness and friction coefficient) that are required as input to the contact model. The paper presents different approaches to choose these parameters: the contact stiffness in normal and tangential direction are both calculated and measured. The calculation is based on the analytical models in literature, the measurements are carried out on a dedicated test rig. The friction coefficient is also measured. Test results of the forced response of the same bladed disk with UPDs are available for each blade, they come from an experimental campaign under controlled excitation and centrifugal force. The forced response of the bladed disk is not used as a mean to tune the contact parameters, but rather as a validation tool: the effect of the different choices of contact parameters in the code is highlighted by the comparison of the calculated and experimental forced response of the bladed disk.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2675433
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo