In this paper, we address nonradiating and cloaking problems exploiting the surface equivalence principle, by imposing at any arbitrary boundary the control of the admittance discontinuity between the overall object (with or without cloak) and the background. After a rigorous demonstration, we apply this model to a nonradiating problem, appealing for anapole modes and metamolecules modeling, and to a cloaking problem, appealing for non-Foster metasurface design. A straightforward analytical condition is obtained for controlling the scattering of a dielectric object over a surface boundary of interest. Previous quasistatic results are confirmed and a general closed-form solution beyond the subwavelength regime is provided. In addition, this formulation can be extended to other wave phenomena once the proper admittance function is defined (thermal, acoustics, elastomechanics, etc.).

Surface-admittance equivalence principle for nonradiating and cloaking problems / Labate, Giuseppe; Alù, Andrea; Matekovits, Ladislau. - In: PHYSICAL REVIEW A. - ISSN 2469-9926. - ELETTRONICO. - 95:6(2017), pp. 1-6. [10.1103/PhysRevA.95.063841]

Surface-admittance equivalence principle for nonradiating and cloaking problems

LABATE, GIUSEPPE;MATEKOVITS, Ladislau
2017

Abstract

In this paper, we address nonradiating and cloaking problems exploiting the surface equivalence principle, by imposing at any arbitrary boundary the control of the admittance discontinuity between the overall object (with or without cloak) and the background. After a rigorous demonstration, we apply this model to a nonradiating problem, appealing for anapole modes and metamolecules modeling, and to a cloaking problem, appealing for non-Foster metasurface design. A straightforward analytical condition is obtained for controlling the scattering of a dielectric object over a surface boundary of interest. Previous quasistatic results are confirmed and a general closed-form solution beyond the subwavelength regime is provided. In addition, this formulation can be extended to other wave phenomena once the proper admittance function is defined (thermal, acoustics, elastomechanics, etc.).
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2675250
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo