In this work we use computational fluid dynamics (CFD) to simulate a reactive gas–liquid bubbly system in a rectangular bubble column, operating at low superficial velocities (i.e. homogeneous regime). The gas bubbles, injected in the column through a sparger, contain one of the reactants, namely CO2, that via mass transfer moves to the continuous liquid phase, where it reacts with NaOH. A key role is played by the bubble size distribution (BSD) and the specific surface area that define the overall mass transfer rate in the CFD model. In order to correctly predict the BSD and the polydispersity of the bubbly system the population balance equation is solved by the quadrature method of moments (QMOM), within the OpenFOAM (v. 2.2.x) two-fluid solver compressibleTwoPhaseEulerFoam. To reduce the computational time and increase stability, a second-order operator-splitting technique for the solution of the chemically reactive species is also implemented, allowing to solve the different processes involved with their own time-scale. To our knowledge this is the first time that QMOM is employed for the simulation of a real reactive bubbly system and predictions are validated against experiments.
Simulation of a reacting gas–liquid bubbly flow with CFD and PBM: Validation with experiments / Buffo, Antonio; Vanni, Marco; Marchisio, Daniele. - In: APPLIED MATHEMATICAL MODELLING. - ISSN 0307-904X. - 44:(2017), pp. 43-60. [10.1016/j.apm.2016.11.010]
Simulation of a reacting gas–liquid bubbly flow with CFD and PBM: Validation with experiments
BUFFO, ANTONIO;VANNI, Marco;MARCHISIO, DANIELE
2017
Abstract
In this work we use computational fluid dynamics (CFD) to simulate a reactive gas–liquid bubbly system in a rectangular bubble column, operating at low superficial velocities (i.e. homogeneous regime). The gas bubbles, injected in the column through a sparger, contain one of the reactants, namely CO2, that via mass transfer moves to the continuous liquid phase, where it reacts with NaOH. A key role is played by the bubble size distribution (BSD) and the specific surface area that define the overall mass transfer rate in the CFD model. In order to correctly predict the BSD and the polydispersity of the bubbly system the population balance equation is solved by the quadrature method of moments (QMOM), within the OpenFOAM (v. 2.2.x) two-fluid solver compressibleTwoPhaseEulerFoam. To reduce the computational time and increase stability, a second-order operator-splitting technique for the solution of the chemically reactive species is also implemented, allowing to solve the different processes involved with their own time-scale. To our knowledge this is the first time that QMOM is employed for the simulation of a real reactive bubbly system and predictions are validated against experiments.File | Dimensione | Formato | |
---|---|---|---|
2017_44_AMM.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.54 MB
Formato
Adobe PDF
|
1.54 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2671293
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo