Drug resistance is one of the leading causes of poor therapy outcomes in cancer. As several chemotherapeutics are designed to target rapidly dividing cells, the presence of a low-proliferating cell population contributes significantly to treatment resistance. Interestingly, recent studies have shown that compressive stresses acting on tumor spheroids are able to hinder cell proliferation, through a mechanism of growth inhibition. However, studies analyzing the influence of mechanical compression on therapeutic treatment efficacy have still to be performed. In this work, we start from an existing mathematical model for avascular tumors, including the description of mechanical compression. We introduce governing equations for transport and uptake of a chemotherapeutic agent, acting on cell proliferation. Then, model equations are adapted for tumor spheroids and the combined effect of compressive stresses and drug action is investigated. Interestingly, we find that the variation in tumor spheroid volume, due to the presence of a drug targeting cell proliferation, considerably depends on the compressive stress level of the cell aggregate. Our results suggest that mechanical compression of tumors may compromise the efficacy of chemotherapeutic agents. In particular, a drug dose that is effective in reducing tumor volume for stress-free conditions may not perform equally well in a mechanically compressed environment.

Evaluating the influence of mechanical stress on anticancer treatments through a multiphase porous media model / Mascheroni, Pietro; Boso, Daniela; Preziosi, Luigi; Schrefler, Bernhard A.. - In: JOURNAL OF THEORETICAL BIOLOGY. - ISSN 0022-5193. - 421:(2016), pp. 179-188. [10.1016/j.jtbi.2017.03.027]

Evaluating the influence of mechanical stress on anticancer treatments through a multiphase porous media model

PREZIOSI, LUIGI;
2016

Abstract

Drug resistance is one of the leading causes of poor therapy outcomes in cancer. As several chemotherapeutics are designed to target rapidly dividing cells, the presence of a low-proliferating cell population contributes significantly to treatment resistance. Interestingly, recent studies have shown that compressive stresses acting on tumor spheroids are able to hinder cell proliferation, through a mechanism of growth inhibition. However, studies analyzing the influence of mechanical compression on therapeutic treatment efficacy have still to be performed. In this work, we start from an existing mathematical model for avascular tumors, including the description of mechanical compression. We introduce governing equations for transport and uptake of a chemotherapeutic agent, acting on cell proliferation. Then, model equations are adapted for tumor spheroids and the combined effect of compressive stresses and drug action is investigated. Interestingly, we find that the variation in tumor spheroid volume, due to the presence of a drug targeting cell proliferation, considerably depends on the compressive stress level of the cell aggregate. Our results suggest that mechanical compression of tumors may compromise the efficacy of chemotherapeutic agents. In particular, a drug dose that is effective in reducing tumor volume for stress-free conditions may not perform equally well in a mechanically compressed environment.
File in questo prodotto:
File Dimensione Formato  
MascheroniJTB.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.3 MB
Formato Adobe PDF
1.3 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Evaluating the influence_MP_DB_LP_BS.pdf

accesso aperto

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2670892