Extensive use of nanomaterials in commercial consumer products and industrial applications eventually leads to their release to the waste streams and the environment. Nano-ZnO is one of the most widely-used nanomaterials (NMs) due to its unique properties. It is also known to impact biological processes adversely. In this study, the effect of nano-ZnO on biogas generation from sanitary landfills was investigated. Two conventional and two bioreactor landfills were operated using real MSW samples at mesophilic temperature (35 °C) for a period of about 1 year. 100 mg nano-ZnO/kg of dry waste was added to the simulated landfill reactors. Daily gas production, gas composition and leachate Zn concentrations were regularly monitored. A model describing the fate of the nano-ZnO was also developed. The results obtained indicated that as much as 99% of the nano-ZnO was retained within the waste matrix for both reactor operation modes. Waste stabilization was faster in simulated landfill bioreactors with and without the addition of nano-ZnO. Moreover, the presence of the nano-ZnO within the waste led to a decrease in biogas production of about 15%, suggesting that the nano-ZnO might have some inhibitory effects on waste stabilization. This reduction can have potentially significant implications on waste stabilization and the use of biogas from landfills as a renewable energy source.

Effects of nano- ZnO on biogas generation from simulated landfills / Temizel, Ilknur; Emadian, S. Mehdi; DI ADDARIO, Martina; Onay, Turgut T.; Demirel, Burak; Copty, Nadim K.; Karanfil, Tanju. - In: WASTE MANAGEMENT. - ISSN 0956-053X. - (2017). [10.1016/j.wasman.2017.01.017]

Effects of nano- ZnO on biogas generation from simulated landfills.

DI ADDARIO, MARTINA;
2017

Abstract

Extensive use of nanomaterials in commercial consumer products and industrial applications eventually leads to their release to the waste streams and the environment. Nano-ZnO is one of the most widely-used nanomaterials (NMs) due to its unique properties. It is also known to impact biological processes adversely. In this study, the effect of nano-ZnO on biogas generation from sanitary landfills was investigated. Two conventional and two bioreactor landfills were operated using real MSW samples at mesophilic temperature (35 °C) for a period of about 1 year. 100 mg nano-ZnO/kg of dry waste was added to the simulated landfill reactors. Daily gas production, gas composition and leachate Zn concentrations were regularly monitored. A model describing the fate of the nano-ZnO was also developed. The results obtained indicated that as much as 99% of the nano-ZnO was retained within the waste matrix for both reactor operation modes. Waste stabilization was faster in simulated landfill bioreactors with and without the addition of nano-ZnO. Moreover, the presence of the nano-ZnO within the waste led to a decrease in biogas production of about 15%, suggesting that the nano-ZnO might have some inhibitory effects on waste stabilization. This reduction can have potentially significant implications on waste stabilization and the use of biogas from landfills as a renewable energy source.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2670612
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo