Vehicle driveability describes the complex interactions between the driver and the vehicle, mainly related to longitudinal vibrations. Today, a relevant part of the driveability process optimisation is realised by means of track tests, which require a considerable effort due to the number of parameters (such as stiffness and damping components) affecting this behaviour. The drawback of this approach is that it is carried on at a stage when a design iteration becomes very expensive in terms of time and cost. The objective of this work is to propose a light and accurate tool to represent the relevant quantities involved in the driveability analysis, and to understand which are the main vehicle parameters that influence the torsional vibrations transmitted to the driver. Particular attention is devoted to the role of the tyre, the engine mount, the dual mass flywheel and their possible interactions. The presented nonlinear dynamic model has been validated in time and frequency domain and, through linearisation of its nonlinear components, allows to exploit modal and energy analysis. Objective indexes regarding the driving comfort are additionally considered in order to evaluate possible driveability improvements related to the sensitivity of powertrain parameters.

A study on the role of powertrain system dynamics on vehicle driveability / Castellazzi, Luca; Tonoli, Andrea; Amati, Nicola; Galliera, Enrico. - In: VEHICLE SYSTEM DYNAMICS. - ISSN 0042-3114. - 55:7(2017), pp. 1012-1028. [10.1080/00423114.2017.1294699]

A study on the role of powertrain system dynamics on vehicle driveability

CASTELLAZZI, LUCA;TONOLI, Andrea;AMATI, NICOLA;
2017

Abstract

Vehicle driveability describes the complex interactions between the driver and the vehicle, mainly related to longitudinal vibrations. Today, a relevant part of the driveability process optimisation is realised by means of track tests, which require a considerable effort due to the number of parameters (such as stiffness and damping components) affecting this behaviour. The drawback of this approach is that it is carried on at a stage when a design iteration becomes very expensive in terms of time and cost. The objective of this work is to propose a light and accurate tool to represent the relevant quantities involved in the driveability analysis, and to understand which are the main vehicle parameters that influence the torsional vibrations transmitted to the driver. Particular attention is devoted to the role of the tyre, the engine mount, the dual mass flywheel and their possible interactions. The presented nonlinear dynamic model has been validated in time and frequency domain and, through linearisation of its nonlinear components, allows to exploit modal and energy analysis. Objective indexes regarding the driving comfort are additionally considered in order to evaluate possible driveability improvements related to the sensitivity of powertrain parameters.
File in questo prodotto:
File Dimensione Formato  
A Study on the Role of Powertrain System Dynamics on Vehicle Driveability_FINAL.pdf

Open Access dal 08/03/2018

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 2.23 MB
Formato Adobe PDF
2.23 MB Adobe PDF Visualizza/Apri
A study on the role of powertrain system dynamics on vehicle driveability.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 3.56 MB
Formato Adobe PDF
3.56 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2666569
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo