We investigate the general dependence of the thermal transport across nanoparticle–fluid interfaces using molecular dynamics computations. We show that the thermal conductance depends strongly both on the wetting characteristics of the nanoparticle–fluid interface and on the nanoparticle size. Strong nanoparticle–fluid interactions, leading to full wetting states in the host fluid, result in high thermal conductances and efficient interfacial transport of heat. Weak interactions result in partial drying or full drying states, and consistently low thermal conductances. The variation of the thermal conductance with particle size is found to depend on the fluid–nanoparticle interactions. Strong interactions coupled with large interfacial curvatures lead to optimum interfacial heat transport. This complex dependence can be modelled using an equation that includes the interfacial curvature as a parameter. In this way, we rationalise the existing experimental and computer simulation results and show that the thermal transport across nanoscale interfaces is determined by the correlations of both interfacial curvature and nanoparticle-fluid interactions.

Thermal transport across nanoparticle–fluid interfaces: the interplay of interfacial curvature and nanoparticle–fluid interactions / Tascini, Anna Sofia; Armstrong, Jeff; Chiavazzo, Eliodoro; Fasano, Matteo; Asinari, Pietro; Bresme, Fernando. - In: PHYSICAL CHEMISTRY CHEMICAL PHYSICS. - ISSN 1463-9084. - STAMPA. - 19:(2017), pp. 3244-3253. [10.1039/c6cp06403e]

Thermal transport across nanoparticle–fluid interfaces: the interplay of interfacial curvature and nanoparticle–fluid interactions

CHIAVAZZO, ELIODORO;FASANO, MATTEO;ASINARI, PIETRO;
2017

Abstract

We investigate the general dependence of the thermal transport across nanoparticle–fluid interfaces using molecular dynamics computations. We show that the thermal conductance depends strongly both on the wetting characteristics of the nanoparticle–fluid interface and on the nanoparticle size. Strong nanoparticle–fluid interactions, leading to full wetting states in the host fluid, result in high thermal conductances and efficient interfacial transport of heat. Weak interactions result in partial drying or full drying states, and consistently low thermal conductances. The variation of the thermal conductance with particle size is found to depend on the fluid–nanoparticle interactions. Strong interactions coupled with large interfacial curvatures lead to optimum interfacial heat transport. This complex dependence can be modelled using an equation that includes the interfacial curvature as a parameter. In this way, we rationalise the existing experimental and computer simulation results and show that the thermal transport across nanoscale interfaces is determined by the correlations of both interfacial curvature and nanoparticle-fluid interactions.
File in questo prodotto:
File Dimensione Formato  
12rNVP-c6cp06403e.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 3.41 MB
Formato Adobe PDF
3.41 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
kapitza.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 8.27 MB
Formato Adobe PDF
8.27 MB Adobe PDF Visualizza/Apri
kapitza-si.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 225.69 kB
Formato Adobe PDF
225.69 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2666085
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo