In the present study, the densification response of Al matrix reinforced with different weight percentages (0, 0.5, 1.0, 1.5 and 2.0 wt.%) of graphene nanoplatelets (GNPs) was studied. These composites were produced by a wet method followed by a conventional powder metallurgy. The Raman spectrum of graphene indicates that preparation of the composites through the wet mixing method did not affect the disordering and defect density in the GNPs structure. The nanocomposite powder mixture was consolidated via a cold uniaxial compaction. The samples were sintered at different temperatures (540, 580 and 620 °C) under nitrogen flow so as to assess the sinterability of the nanocomposites. X-ray diffraction (XRD) has been carried out to check the possible reaction between GNPs and aluminum. According to the XRD patterns, it seems that Al4C3 did not form during the fabrication process. The relative density, compressibility, sinterability and Vickers hardness of the nanocomposites were also evaluated. The effects of GNPs on the consolidation behavior of the matrix were studied using the Heckel, Panelli and Ambrosio Filho, and Ge equations. The outcomes show that at early stage of consolidation the rearrangement of particles is dominant, while by increasing the compaction pressure, due to the load partitioning effect of GNPs, the densification rate of the powder mixture decreases. Moreover, the fabricated nanocomposites exhibited high Vickers hardness of 67 HV5, which is approximately 50% higher than monolithic aluminum. The effect of graphene addition on the thermal conductivity of Al/GNPs nanocomposites was evaluated by means of thermal diffusivity measurement, and the results showed that the higher thermal conductivity can be only achieved at lower graphene content.

An Investigation on the Sinterability and the Compaction Behavior of Aluminum/Graphene Nanoplatelets (GNPs) Prepared by Powder Metallurgy / Saboori, Abdollah; Novara, Chiara; Pavese, Matteo; Badini, CLAUDIO FRANCESCO; Giorgis, Fabrizio; Fino, Paolo. - In: JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE. - ISSN 1059-9495. - ELETTRONICO. - (2017), pp. 1-7.

An Investigation on the Sinterability and the Compaction Behavior of Aluminum/Graphene Nanoplatelets (GNPs) Prepared by Powder Metallurgy

SABOORI, ABDOLLAH;NOVARA, CHIARA;PAVESE, MATTEO;BADINI, CLAUDIO FRANCESCO;GIORGIS, FABRIZIO;FINO, Paolo
2017

Abstract

In the present study, the densification response of Al matrix reinforced with different weight percentages (0, 0.5, 1.0, 1.5 and 2.0 wt.%) of graphene nanoplatelets (GNPs) was studied. These composites were produced by a wet method followed by a conventional powder metallurgy. The Raman spectrum of graphene indicates that preparation of the composites through the wet mixing method did not affect the disordering and defect density in the GNPs structure. The nanocomposite powder mixture was consolidated via a cold uniaxial compaction. The samples were sintered at different temperatures (540, 580 and 620 °C) under nitrogen flow so as to assess the sinterability of the nanocomposites. X-ray diffraction (XRD) has been carried out to check the possible reaction between GNPs and aluminum. According to the XRD patterns, it seems that Al4C3 did not form during the fabrication process. The relative density, compressibility, sinterability and Vickers hardness of the nanocomposites were also evaluated. The effects of GNPs on the consolidation behavior of the matrix were studied using the Heckel, Panelli and Ambrosio Filho, and Ge equations. The outcomes show that at early stage of consolidation the rearrangement of particles is dominant, while by increasing the compaction pressure, due to the load partitioning effect of GNPs, the densification rate of the powder mixture decreases. Moreover, the fabricated nanocomposites exhibited high Vickers hardness of 67 HV5, which is approximately 50% higher than monolithic aluminum. The effect of graphene addition on the thermal conductivity of Al/GNPs nanocomposites was evaluated by means of thermal diffusivity measurement, and the results showed that the higher thermal conductivity can be only achieved at lower graphene content.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2664258
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo