The growing population in urban areas worldwide is having a severe impact on the environment and quality of life of inhabitants. To alleviate the impact on traditional transportation infrastructures, existing and future urban facilities must be more environmentally friendly and sustainable. One solution is to develop new “green transportation infrastructures” (GTI) as part of the urban storm water management system. Although technologies for GTI have been well-investigated, there is limited experience of their potential benefits globally and, specifically, in Italy. This work, funded by the Regione Piemonte in 2015 and supported by different areas of expertise, aimed at promoting new urban storm water systems through the retention, filtration, and restoration of natural soil water content. To this end, a laboratory investigation of porous road pavements (Figure 1), and vegetated boxes (Figure 2 and 3) that filter runoff pollutants from impervious pavements was conducted to examine ecological, hydraulic, and mechanical performance levels. Three different experimental scales (samples, columns, and boxes) for the two GTI technologies were considered. Samples were used to assess the permeability, void content, strength, and pollution reduction potential of different materials used to build full-scale bio-filter systems. The pollutant reduction was determined by the reduction in suspended solids and hydrocarbon concentration, with results confirming that it depends on filter type and permeability. The preliminary results are encouraging and show a high reduction in total suspended solids and hydrocarbon concentrations (from 65% to 99%). Concrete pervious pavements and vegetated bio-filter systems were reproduced in columns and boxes, combining materials and supports for biofilm bacteria (geotextile, plastic caps) to assess the abatement potential of pre-developed biofilm bacteria compared to systems where bacteria are present naturally. Hydraulic parameters (percolation time, void content, outflow rate) were estimated so as to provide basic design parameters for full-scale applications.

Preliminary laboratory multi-scale investigation on performance of pervious concrete pavements and vegetated elements as storm water bio-filters and retention systems / Comino, Elena; Bassani, Marco; Tefa, Luca; Rosso, Maurizio; Garcia, A.; Ricci, R.; Bertola, F.; Canonico, F.. - ELETTRONICO. - (2016). (Intervento presentato al convegno Ecological Sustainability: Engineering Change tenutosi a Le Corum, Montpellier, France nel 29 August - 1 September 2016) [10.13140/RG.2.2.10894.77127].

Preliminary laboratory multi-scale investigation on performance of pervious concrete pavements and vegetated elements as storm water bio-filters and retention systems

COMINO, ELENA;BASSANI, Marco;TEFA, LUCA;ROSSO, MAURIZIO;
2016

Abstract

The growing population in urban areas worldwide is having a severe impact on the environment and quality of life of inhabitants. To alleviate the impact on traditional transportation infrastructures, existing and future urban facilities must be more environmentally friendly and sustainable. One solution is to develop new “green transportation infrastructures” (GTI) as part of the urban storm water management system. Although technologies for GTI have been well-investigated, there is limited experience of their potential benefits globally and, specifically, in Italy. This work, funded by the Regione Piemonte in 2015 and supported by different areas of expertise, aimed at promoting new urban storm water systems through the retention, filtration, and restoration of natural soil water content. To this end, a laboratory investigation of porous road pavements (Figure 1), and vegetated boxes (Figure 2 and 3) that filter runoff pollutants from impervious pavements was conducted to examine ecological, hydraulic, and mechanical performance levels. Three different experimental scales (samples, columns, and boxes) for the two GTI technologies were considered. Samples were used to assess the permeability, void content, strength, and pollution reduction potential of different materials used to build full-scale bio-filter systems. The pollutant reduction was determined by the reduction in suspended solids and hydrocarbon concentration, with results confirming that it depends on filter type and permeability. The preliminary results are encouraging and show a high reduction in total suspended solids and hydrocarbon concentrations (from 65% to 99%). Concrete pervious pavements and vegetated bio-filter systems were reproduced in columns and boxes, combining materials and supports for biofilm bacteria (geotextile, plastic caps) to assess the abatement potential of pre-developed biofilm bacteria compared to systems where bacteria are present naturally. Hydraulic parameters (percolation time, void content, outflow rate) were estimated so as to provide basic design parameters for full-scale applications.
2016
File in questo prodotto:
File Dimensione Formato  
Poster Comino et al. biofilter_rev04.pdf

accesso aperto

Descrizione: Poster presentazione
Tipologia: Altro materiale allegato
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 1.94 MB
Formato Adobe PDF
1.94 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2657750
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo