Blood vessels are the only system to provide nutrients and oxygen to every part of the body. Many diseases can have significant effects on blood vessel formation, so that the vascular network can be a cue to assess malicious tumor and ischemic tissues. Various imaging techniques can visualize blood vessel structure, but their applications are often constrained by either expensive costs, contrast agents, ionizing radiations, or a combination of the above. Photoacoustic imaging combines the high-contrast and spectroscopic-based specificity of optical imaging with the high spatial resolution of ultrasound imaging, and image contrast depends on optical absorption. This enables the detection of light absorbing chromophores such as hemoglobin with a greater penetration depth compared to purely optical techniques. We present here a skeletonization algorithm for vessel architectural analysis using non-invasive photoacoustic 3D images acquired without the administration of any exogenous contrast agents. 3D photoacoustic images were acquired on rats (n  =  4) in two different time points: before and after a burn surgery. A skeletonization technique based on the application of a vesselness filter and medial axis extraction is proposed to extract the vessel structure from the image data and six vascular parameters (number of vascular trees (NT), vascular density (VD), number of branches (NB), 2D distance metric (DM), inflection count metric (ICM), and sum of angles metric (SOAM)) were calculated from the skeleton. The parameters were compared (1) in locations with and without the burn wound on the same day and (2) in the same anatomic location before (control) and after the burn surgery. Four out of the six descriptors were statistically different (VD, NB, DM, ICM, p  <  0.05) when comparing two anatomic locations on the same day and when considering the same anatomic location at two separate times (i.e. before and after burn surgery). The study demonstrates an approach to obtain quantitative characterization of the vascular network from 3D photoacoustic images without any exogenous contrast agent which can assess microenvironmental changes related to disease progression.

Skeletonization algorithm-based blood vessel quantification using in vivo 3D photoacoustic imaging / Meiburger, KRISTEN MARIKO; Nam, S. Y; Chung, E; Suggs, L. J; Emelianov, S. Y; Molinari, Filippo. - In: PHYSICS IN MEDICINE AND BIOLOGY. - ISSN 0031-9155. - ELETTRONICO. - 61:22(2016), pp. 7994-8009. [10.1088/0031-9155/61/22/7994]

Skeletonization algorithm-based blood vessel quantification using in vivo 3D photoacoustic imaging

MEIBURGER, KRISTEN MARIKO;MOLINARI, FILIPPO
2016

Abstract

Blood vessels are the only system to provide nutrients and oxygen to every part of the body. Many diseases can have significant effects on blood vessel formation, so that the vascular network can be a cue to assess malicious tumor and ischemic tissues. Various imaging techniques can visualize blood vessel structure, but their applications are often constrained by either expensive costs, contrast agents, ionizing radiations, or a combination of the above. Photoacoustic imaging combines the high-contrast and spectroscopic-based specificity of optical imaging with the high spatial resolution of ultrasound imaging, and image contrast depends on optical absorption. This enables the detection of light absorbing chromophores such as hemoglobin with a greater penetration depth compared to purely optical techniques. We present here a skeletonization algorithm for vessel architectural analysis using non-invasive photoacoustic 3D images acquired without the administration of any exogenous contrast agents. 3D photoacoustic images were acquired on rats (n  =  4) in two different time points: before and after a burn surgery. A skeletonization technique based on the application of a vesselness filter and medial axis extraction is proposed to extract the vessel structure from the image data and six vascular parameters (number of vascular trees (NT), vascular density (VD), number of branches (NB), 2D distance metric (DM), inflection count metric (ICM), and sum of angles metric (SOAM)) were calculated from the skeleton. The parameters were compared (1) in locations with and without the burn wound on the same day and (2) in the same anatomic location before (control) and after the burn surgery. Four out of the six descriptors were statistically different (VD, NB, DM, ICM, p  <  0.05) when comparing two anatomic locations on the same day and when considering the same anatomic location at two separate times (i.e. before and after burn surgery). The study demonstrates an approach to obtain quantitative characterization of the vascular network from 3D photoacoustic images without any exogenous contrast agent which can assess microenvironmental changes related to disease progression.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2656976
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo