Let $A$ be a local Artinian Gorenstein algebra with maximal ideal $\fM$, $P_A(z) := \sum_{p=0}^{\infty} (\tor_p^A(k,k))z^p $ its Poicar\'{e} series. We prove that $P_A(z)$ is rational if either $\dim_k({\fM^2/\fM^3}) \leq 4 $ and $ \dim_k(A) \leq 16,$ or there exist $m\leq 4$ and $c$ such that the Hilbert function $H_A(n)$ of $A$ is equal to $ m$ for $n\in [2,c]$ and equal to $1$ for $n =c+1$. The results are obtained thanks to a decomposition of the apolar ideal $\Ann(F)$ when $F=G+H$ and $G$ and $H$ belong to polynomial rings in different variables.

On the rationality of Poincaré series of Gorenstein algebras via Macaulay's correspondence / Casnati, Gianfranco; Jelisiejew, Joachim; Notari, Roberto. - In: ROCKY MOUNTAIN JOURNAL OF MATHEMATICS. - ISSN 0035-7596. - STAMPA. - 46:(2016), pp. 413-433. [10.1216/RMJ-2016-46-2-413]

On the rationality of Poincaré series of Gorenstein algebras via Macaulay's correspondence

CASNATI, GIANFRANCO;NOTARI, ROBERTO
2016

Abstract

Let $A$ be a local Artinian Gorenstein algebra with maximal ideal $\fM$, $P_A(z) := \sum_{p=0}^{\infty} (\tor_p^A(k,k))z^p $ its Poicar\'{e} series. We prove that $P_A(z)$ is rational if either $\dim_k({\fM^2/\fM^3}) \leq 4 $ and $ \dim_k(A) \leq 16,$ or there exist $m\leq 4$ and $c$ such that the Hilbert function $H_A(n)$ of $A$ is equal to $ m$ for $n\in [2,c]$ and equal to $1$ for $n =c+1$. The results are obtained thanks to a decomposition of the apolar ideal $\Ann(F)$ when $F=G+H$ and $G$ and $H$ belong to polynomial rings in different variables.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2650510
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo