Motivated by the instability of suspension bridges, we consider a class of second order Hamiltonian systems where one component initially holds almost all the energy of the system. We show that if the total energy is sufficiently small then it remains on this component, whereas if the total energy is larger it may transfer to the other components. Through Mathieu equations we explain the precise mechanism which governs the energy transfer.

Which Residual Mode Captures the Energy of the Dominating Mode in Second Order Hamiltonian Systems? / Berchio, Elvise; Gazzola, Filippo; Zanini, Chiara. - In: SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS. - ISSN 1536-0040. - STAMPA. - 15:1(2016), pp. 338-355. [10.1137/140990577]

Which Residual Mode Captures the Energy of the Dominating Mode in Second Order Hamiltonian Systems?

BERCHIO, ELVISE;ZANINI, CHIARA
2016

Abstract

Motivated by the instability of suspension bridges, we consider a class of second order Hamiltonian systems where one component initially holds almost all the energy of the system. We show that if the total energy is sufficiently small then it remains on this component, whereas if the total energy is larger it may transfer to the other components. Through Mathieu equations we explain the precise mechanism which governs the energy transfer.
File in questo prodotto:
File Dimensione Formato  
99057.pdf

accesso riservato

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.11 MB
Formato Adobe PDF
1.11 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2649123
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo