We investigate the four solar system tests of gravity - perihelion precession, light bending, Shapiro time delay, gravitational redshift - in $f(T)$ gravity. In particular, we investigate the solution derived by Ruggiero and Radicella, Phys. Rev. D 91, 104014 (2015), for a nondiagonal vierbein field for a polynomial $f(T) = T + \alpha T^n$, where $\alpha$ is a constant and $|n| \neq 1$. In this paper, we derive the solutions for each test, in which Weinberg's, Bodenner and Will's, Cattani et al. and Rindler and Ishak's methods are applied, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York, 1972); Am. J. Phys. 71 (2003); Phys. Rev. D 87, 047503 (2013); Phys. Rev. D 76, 043006 (2007). We set a constraint on alpha for $n$ = 2, 3 by using data available from literature.
Solar System tests in f(T) gravity / Farrugia, Gabriel; Said, Jackson Levi; Ruggiero, MATTEO LUCA. - In: PHYSICAL REVIEW D. - ISSN 2470-0010. - 93:10(2016), p. 104034.
Titolo: | Solar System tests in f(T) gravity |
Autori: | |
Data di pubblicazione: | 2016 |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1103/PhysRevD.93.104034 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
http://hdl.handle.net/11583/2643290