The application of computer simulations to scientific and engineering problems has evolved to an established phase over the last decades. In the field of semiconductor device physics, Technology CAD (TCAD) has been regarded as an indispensable tool for the interpretation and prediction of device behavior. More specifically, TCAD modeling and simulation of nanostructured III-nitride light emitters still have challenging problems and is currently a topic under active research. This thesis devotes to the theoretical and numerical investigations of III-nitride bulk and quantum structures, following a bottom-up approach aimed at modeling and understanding photoluminescence and electroluminescence in these structures. In the first part, the calculation of electronic bandstructure is addressed, where a novel k · p model derived from Non-local Empirical Pseudopotential method(NL-EPM) is presented. Optical properties are then calculated employing both Poisson-k · p and a density-matrix based approach, gain and luminescence spectra can be extracted by solving the semiconductor-Bloch equation numerically. The last part of this thesis deals with the microscopic quantum transport, within the framework of the quantum-statistical nonequilibrium Greens function formalism(NEGF). While classical drift-diffusion models assume that bound carriers hold their coherence in the confined direction and unbound carriers are completely incoherent, NEGF does not distinguish between bound and unbound states and treats them on equal footing. In addition, NEGF also provides intuitive insights into energy-resolved carrier distributions, currents and coherence loss mechanisms. The numerical computations alongside this thesis can be computationally very involved, some code developed along with this thesis is deployed on the clusters and able to scale up to more than 1000 CPU cores, thanks to the parallel implementation technique such as OpenMP and MPI, as well as HPC infrastructures available at CINECA computing center.
Physics-based multiscale modeling of III-nitride light emitters / Zhou, Xiangyu. - (2016). [10.6092/polito/porto/2639710]
Physics-based multiscale modeling of III-nitride light emitters
ZHOU, XIANGYU
2016
Abstract
The application of computer simulations to scientific and engineering problems has evolved to an established phase over the last decades. In the field of semiconductor device physics, Technology CAD (TCAD) has been regarded as an indispensable tool for the interpretation and prediction of device behavior. More specifically, TCAD modeling and simulation of nanostructured III-nitride light emitters still have challenging problems and is currently a topic under active research. This thesis devotes to the theoretical and numerical investigations of III-nitride bulk and quantum structures, following a bottom-up approach aimed at modeling and understanding photoluminescence and electroluminescence in these structures. In the first part, the calculation of electronic bandstructure is addressed, where a novel k · p model derived from Non-local Empirical Pseudopotential method(NL-EPM) is presented. Optical properties are then calculated employing both Poisson-k · p and a density-matrix based approach, gain and luminescence spectra can be extracted by solving the semiconductor-Bloch equation numerically. The last part of this thesis deals with the microscopic quantum transport, within the framework of the quantum-statistical nonequilibrium Greens function formalism(NEGF). While classical drift-diffusion models assume that bound carriers hold their coherence in the confined direction and unbound carriers are completely incoherent, NEGF does not distinguish between bound and unbound states and treats them on equal footing. In addition, NEGF also provides intuitive insights into energy-resolved carrier distributions, currents and coherence loss mechanisms. The numerical computations alongside this thesis can be computationally very involved, some code developed along with this thesis is deployed on the clusters and able to scale up to more than 1000 CPU cores, thanks to the parallel implementation technique such as OpenMP and MPI, as well as HPC infrastructures available at CINECA computing center.File | Dimensione | Formato | |
---|---|---|---|
2016PhD_Zhou.pdf
accesso aperto
Descrizione: Full doctoral thesis
Tipologia:
Tesi di dottorato
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
4.17 MB
Formato
Adobe PDF
|
4.17 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2639710
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo